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Origin of the quadratic problem Linearization Methods to obtain UB Computational experiments

Context

max
x∈Rn,y∈Rm

d⊤y + c⊤x + ∥x∥22

s.t. Ax + Ty = b,

x ≥ 0, y ≥ 0

→ Appears as the subproblem in a Benders’ decomposition for
solving a Distributionally Robust Optimization (DRO)
problem.

→ Optimality =⇒ LB + UB

→ Problem is NP-Hard.

→ Generate some cuts and calculate the UB to prove the
optimality is sufficient.

Mathis Azéma Convex quadratic maximization problem 28/02/25 2 / 23



Origin of the quadratic problem Linearization Methods to obtain UB Computational experiments

Context

max
x∈Rn,y∈Rm

d⊤y + c⊤x + ∥x∥22

s.t. Ax + Ty = b,

x ≥ 0, y ≥ 0

→ Appears as the subproblem in a Benders’ decomposition for
solving a Distributionally Robust Optimization (DRO)
problem.

→ Optimality =⇒ LB + UB

→ Problem is NP-Hard.

→ Generate some cuts and calculate the UB to prove the
optimality is sufficient.
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Contents

1 Origin of the quadratic problem
Unit Commitment
Distributionnally Robust Optimization
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Frank-Wolfe Algorithm
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3 Methods to obtain Upper Bounds
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Deterministic UC Problem

M: set of units

T : time horizon

d ∈ RT : demand vector

xi : commitment variables (binary).

yi : production variables (continuous).

min
xi ,yi

∑
i∈M

c⊤i xi +
∑
i∈M

b⊤i yi

s.t. Fixi ≥ fi ∀i ∈M
Hiyi ≥ hi ∀i ∈M
Aixi + Biyi ≥ gi ∀i ∈M∑
i∈M

yi = d

xi ∈ {0, 1}mi×T , yi ∈ RT
+
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2-stage UC Problem under uncertainty

Uncertainty on the demand.

2-stage assumption:

1st stage: commitment variables (binary)
2nd stage: production variables (continuous)

min
xi ,yi

c⊤x + b⊤y

s.t. x ∈ X

yi ∈ Yi (xi ) ∀i ∈M∑
i∈M

yi = d ?
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2-stage UC Problem under uncertainty

Uncertainty on the demand.
2-stage assumption:

1st stage: commitment variables (binary)
2nd stage: production variables (continuous)

min
xi

c⊤x + Q(x , d)

s.t. x ∈ X

Q(x , d): recourse function representing the optimal cost of the
second stage, considering which units are on or off (first stage) and
the demand d

Q(x , d) = min
y

b⊤y = max
α,β,γ

α⊤d + β⊤x + γ

yi ∈ Yi (xi ) (α, β, γ) ∈ Λ∑
i∈M

yi = d
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Distributionnally Robust Optimization

min
x

c⊤x +max
Q∈P

Eξ∼Q[Q(x , ξ)]

s.t. xi ∈ Xi , ∀i ∈M

Link between RO and SP:

If P = {P0}, then the DRO problem is equal to the
risk-neutral one.

If P includes all distributions supported on U , then the DRO
problem is equivalent to the robust optimization (RO)
problem with U as the uncertainty set.

=⇒ How should we select P?
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DRO Unit Commitment problem

Idea: P has to include distributions “close” to the empirical one.
Wasserstein distance-based ambiguity sets

P =
{
Q | supp(Q) ⊂ RT , W2(Q,P0) ≤ θ

}
, P0 =

1

N

∑
i∈[N]

δζi
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DRO Unit Commitment problem

Idea: P has to include distributions “close” to the empirical one.
Wasserstein distance-based ambiguity sets

P =
{
Q | supp(Q) ⊂ RT , W2(Q,P0) ≤ θ

}
, P0 =

1

N

∑
i∈[N]

δζi

Reformulation DRO Unit Commitment problem1:
min
x

c⊤x + max
Q:W2(Q,P0)≤θ [λ]

supp(Q)⊂RT

EQ[Q(x , ξ)]

s.t. x ∈ X

1Gao and Kleywegt 2016.
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DRO Unit Commitment problem

Idea: P has to include distributions “close” to the empirical one.
Wasserstein distance-based ambiguity sets

P =
{
Q | supp(Q) ⊂ RT , W2(Q,P0) ≤ θ

}
, P0 =

1

N

∑
i∈[N]

δζi

Reformulation DRO Unit Commitment problem1:

min
x,λ≥0

c⊤x + λθ2 +
1

N

N∑
i=1

sup
ξ∈RT

(
Q(x , ξ)− λ∥ξ − ζi∥22

)
s.t. x ∈ X

1Gao and Kleywegt 2016.
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DRO Unit Commitment problem

Idea: P has to include distributions “close” to the empirical one.
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P =
{
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}
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N
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Reformulation DRO Unit Commitment problem1:
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x,λ≥0

c⊤x + λθ2 +
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N
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(
β⊤
k x + γk + α⊤

k ζi +
∥αk∥22
4λ
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1Gao and Kleywegt 2016.
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}
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1

N

∑
i∈[N]

δζi
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4

)
∀k ∈ [K ]

=⇒ Benders’ algorithm

1Gao and Kleywegt 2016.
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Benders algorithm DRO

Master Problem:

min
x,w ,λ,z

c⊤x + wθ2 +
1

N

N∑
i=1

zi

s.t. x ∈ X
∥(2,w − λ)∥2 ≤ w + λ

z i ≥ (αi
ℓ)

⊤ζ i + (βi
ℓ)

⊤x + γ i
ℓ +

λ∥αi
ℓ∥2

2

4
, ∀ℓ ≤ k, ∀i ∈ [N]

θ ∈ R, xi ∈ {0, 1}mi×T

Subproblem for each scenario i :

max
α,β,γ

α⊤ζi + β⊤x∗ + γ +
λ∗∥α∥22

4
s.t. (α, β, γ) ∈ Λ

(α∗, β∗, γ∗)(x∗, λ∗)
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α,β,γ

α⊤ζi + β⊤x∗ + γ +
λ∗∥α∥22

4
s.t. (α, β, γ) ∈ Λ

Convex maximization
problem (NP-Hard)

(α∗, β∗, γ∗)(x∗, λ∗)
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Comparison risk-neutral/ DRO subproblems

Computational times on instance with 50 units and 1 random
demand
=⇒ dimension of the quadratic term: T = 24

Subproblem Risk-Neutral for each scenario i :

max
α,β,γ

α⊤ζi + β⊤x∗ + γ

s.t. (α, β, γ) ∈ Λ

LP

≈ 0.002s

Subproblem DRO for each scenario i :

max
α,β,γ

α⊤ζi + β⊤x∗ + γ+
λ∗∥α∥2

2

4
s.t. (α, β, γ) ∈ Λ

Convex maximization problem (NP-Hard)

≈ 0.5s

Problem: Directly solving it with Gurobi can be challenging.

Idea: By using only ”good” cuts (potentially suboptimal), we can
often eliminate the current solution.

Mathis Azéma Convex quadratic maximization problem 28/02/25 8 / 23



Origin of the quadratic problem Linearization Methods to obtain UB Computational experiments

Comparison risk-neutral/ DRO subproblems

Computational times on instance with 50 units and 1 random
demand
=⇒ dimension of the quadratic term: T = 24

Subproblem Risk-Neutral for each scenario i :

max
α,β,γ

α⊤ζi + β⊤x∗ + γ

s.t. (α, β, γ) ∈ Λ

LP

≈ 0.002s

Subproblem DRO for each scenario i :

max
α,β,γ

α⊤ζi + β⊤x∗ + γ+
λ∗∥α∥2

2

4
s.t. (α, β, γ) ∈ Λ

Convex maximization problem (NP-Hard)

≈ 0.5s

Problem: Directly solving it with Gurobi can be challenging.

Idea: By using only ”good” cuts (potentially suboptimal), we can
often eliminate the current solution.
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Notations

Convex maximization problem: (”Hard” to solve)

max
x∈Rn,y∈Rm

d⊤y + c⊤x + ∥x∥22

(P) s.t. Ax + Ty = b,

x ≥ 0, y ≥ 0

Optimal value: v∗, Optimal solution: (x∗, y∗) ← Optimal cut

Linearization: (”Easy” to solve)

max
x∈Rn,y∈Rm

d⊤y + (c + 2x̄)⊤x − ∥x̄∥22

(Pℓ(x̄)) s.t. Ax + Ty = b,

x ≥ 0, y ≥ 0

Optimal value: v ℓ(x̄), Optimal solution: sℓ(x̄) ← Valid cut
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Frank-Wolfe Algorithm

v(x , y) = d⊤y + c⊤x + ∥x∥22

x0

Choice of the step length αk by solving:

max
α∈[0,1]

v((xk , yk) + α(pxk , p
y
k ))

=⇒ By convexity, αk ∈ {0, 1} =⇒ (xk+1, yk+1) = sℓ(xk).
=⇒ The sequence (v(xk , yk))k≥1 is strictly increasing.
=⇒ Frank-Wolfe Algorithm terminates.
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1st starting point strategy: Sampling

Attraction field of the face F :

Px(F ) = {x̄ s.t. F is the set of optimal solutions of

the linearized problem at x̄}

Proposition

The set Px(F ) is a polyhedron.

(0, 0)

(1.4, 0.2)

(1.2, 0.8)

(0, 2)

(−1.1, 0.9)

(−0.6, 0.2)

Figure: Maximizing ∥x∥22
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Px(F ) = {x̄ s.t. F is the set of optimal solutions of

the linearized problem at x̄}

Proposition

The relative interior of Px(x
∗) is

non empty.

If we randomly draw the
starting point, FW algorithm
can find the optimal solution
with a non zero probability.
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Attraction field of the face F :

Px(F ) = {x̄ s.t. F is the set of optimal solutions of

the linearized problem at x̄}

Proposition

The relative interior of Px(x
∗) is

non empty.

Proposition

The extreme point (x , y) is a
local optimum of the quadratic
convex maximization problem if
and only if x belongs to the
attraction field of (x , y).

(0, 0)

(1.4, 0.2)

(1.2, 0.8)

(0, 2)

(−1.1, 0.9)

(−0.6, 0.2)

Figure: Maximizing ∥x∥22
=⇒ FW algorithm finds a local
optimum.
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2nd starting point strategy: Discretize the space

Proposition

Let x̄ and v(x , y) defined by :

v(x , y) = d⊤y + c⊤x + ∥x∥22
the following inequality holds:

v ℓ(x̄) ≤ v(sℓ(x̄)) ≤ v∗ ≤ v ℓ(x̄) + ∥x̄ − x∗∥2.

Corollary

Let ε > 0 and X ⊂ Rn such that:

max
x∈P

dist(x ,X ) ≤ ε dist(x ,X ) = min
x̄∈X
∥x − x̄∥2

Define v ℓ(X ) = maxx∈X v ℓ(x). Then, the following inequalities hold:

v ℓ(X ) ≤ v∗ ≤ ε2 + v ℓ(X )
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A MILP to solve the discretized problem

Corollary

Let ε > 0 and X ⊂ Rn such that:

max
x∈P

dist(x ,X ) ≤ ε dist(x ,X ) = min
x̄∈X

∥x − x̄∥2

Define v ℓ(X ) = maxx∈X v ℓ(x). Then, the following inequalities hold:

v ℓ(X ) ≤ v∗ ≤ ε2 + v ℓ(X )

u1

u1

u2

u2

u3

u3

u4

u4

u5 u6

v ℓ(X ) ≤ v∗ ≤ v ℓ(X ) + n2 max
k∈N

|uk − uk−1|2

4

X =

x | xi =
∑
k∈[N]

δikuk s.t.

{
δik ∈ {0, 1}∑

k∈[N] δ
i
k = 1


vℓ(X ) =max

x̄,x,y
d⊤y + (c + 2x̄)⊤x − ∥x̄∥22

s.t. Ax + Ty = b,

x ≥ 0, y ≥ 0, x̄ ∈ X

=⇒ Linearization through binary variables δik
=⇒ MILP
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Adapted Benders’ Algorithm

First case

Draw a starting point

Apply FW algorithm

Local optimum

New cut ?
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Contents

1 Origin of the quadratic problem
Unit Commitment
Distributionnally Robust Optimization

2 Linearization
Frank-Wolfe Algorithm
Starting point of Frank-Wolfe Algorithm

3 Methods to obtain Upper Bounds
KKT reformulation
PSD relaxation
Piecewise upper approximation

4 Computational experiments
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KKT reformulation

Structure of Oracle problem for the Unit commitment:

max
x∈Rn,y∈Rm

+

d⊤y + c⊤x + ∥x∥22

s.t. x + Tiyi = bi , ∀i
y ≥ 0

KKT conditions =⇒ MILP.

→ Advantage: Provide optimal solution.

→ Drawback: Large number of binary variables.

→ Worst than Gurobi solving directly the quadratic problem
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Mathis Azéma Convex quadratic maximization problem 28/02/25 15 / 23



Origin of the quadratic problem Linearization Methods to obtain UB Computational experiments

Contents

1 Origin of the quadratic problem
Unit Commitment
Distributionnally Robust Optimization

2 Linearization
Frank-Wolfe Algorithm
Starting point of Frank-Wolfe Algorithm

3 Methods to obtain Upper Bounds
KKT reformulation
PSD relaxation
Piecewise upper approximation

4 Computational experiments
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PSD relaxation

max
x∈Rn,y∈Rm

+

d⊤y + c⊤x + ∥x∥22

s.t. x + Tiyi = bi , ∀i
y ≥ 0
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PSD relaxation

max
x∈Rn,y∈Rm

+

d⊤y + c⊤x + ∥x∥22

s.t. x + Tiyi = bi , ∀i
y ≥ 0

PSD relaxation first order:

max
x∈Rn,y∈Rm

+

d⊤y + c⊤x + Tr(X )

s.t. x + Tiyi = bi , ∀i

y ≥ 0, X =

[
1 x⊤

x xx⊤

]
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PSD relaxation

max
x∈Rn,y∈Rm

+

d⊤y + c⊤x + ∥x∥22

s.t. x + Tiyi = bi , ∀i
y ≥ 0

PSD relaxation first order:

max
y∈Rm

+

d⊤y + c⊤X1,. + Tr(X )

s.t. X1,. + Tiyi = bi , ∀i
X ⪰ 0

y ≥ 0

→ Advantage: Tractable convex problem.

→ Drawback: Optimal value: +∞
→ Worst than Gurobi solving directly the quadratic problem
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PSD relaxation

max
x∈Rn,y∈Rm

+

d⊤y + c⊤x + ∥x∥22

s.t. x + Tiyi = bi , ∀i (18a)

y ≥ 0

PSD relaxation second order:

Idea: Consider a large PSD matrix that include product
variables between x and y up to order 2.

Multiply constraint (18a) by each variable xt , yi ,t

→ Advantage: Bounded convex problem and good relaxation.

→ Drawback: Untractable with solvers like Mosek. PSD size:
O((NT )2)

→ Worst than Gurobi solving directly the quadratic problem
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PSD relaxation

max
x∈Rn,y∈Rm

+

d⊤y + c⊤x + ∥x∥22

s.t. x + Tiyi = bi , ∀i
y ≥ 0

Smaller PSD relaxation second order:

Idea: Use smaller PSD matrices that include product
variables between xt and y up to order 2.

→ Advantage: Bounded convex problem and good relaxation.

→ Drawback: Untractable with solvers like Mosek. T PSD of
size: O(N2)

→ Worst than Gurobi solving directly the quadratic problem
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Piecewise upper approximation

x2Upper 1

x
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MILPs.
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Piecewise upper approximation

x2

x∗1

Upper 3

x∗3

x

MILPs.

Number of binary variables
increase at each iteration

Convergence in few
iterations.
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Adapted Benders’ Algorithm

First case

Draw a starting point

Apply FW algorithm

Local optimum

New cut ?

Second case

Solve disticretized
problem (MILP)

Apply FW algorithm

Local optimum

New cut ?

Third case

Solve with Gurobi

Global optimum

New cut ?

No good UB No good UB

Good UB
but can be long
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Instances

Source: SMS++/ EDF. Instances with generators (10, 20,
50) and only one random demand (dimension: T = 24)

Source IEEE: 2 instances with network constraints:

14 thermal units and 4 buses =⇒ dimension of uncertainty:
4× T = 96
54 generators and 118 buses =⇒ dimension of uncertainty:
118× T = 2832
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SMS10 SMS20 SMS50 IEEE14 IEEE54

Units 10 20 50 14 54
ξ dimension 24 24 24 96 2832

FW 0.002 0.002 0.002 0.002 0.1
MILP start 0.03 0.05 0.4 0.05 15
MILP UB 0.1 0.07 0.5 0.05 15
Gurobi 0.2 0.5 0.75 0.1 15

Table: Time comparison (s)

Time saved at each iteration × Number of scenarios !
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Convergence Analysis
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Conclusion

Summary

Analysis of an NP-hard problem that arises as the oracle
problem in a Benders’ decomposition for solving a DRO
problem.

Show how the Frank-Wolfe algorithm can be efficient to
progress in the Benders’ algorithm by generating good cuts.

Exploration of methods for calculating upper bounds.

Future works

Addressing high-dimensional uncertainty (e.g., complex
networks in Unit Commitment).

Improving the formulation of the master problem.

Extending DRO to a multi-stage framework.
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Mathis Azéma Convex quadratic maximization problem 28/02/25 23 / 23



Origin of the quadratic problem Linearization Methods to obtain UB Computational experiments

Conclusion

Summary

Analysis of an NP-hard problem that arises as the oracle
problem in a Benders’ decomposition for solving a DRO
problem.

Show how the Frank-Wolfe algorithm can be efficient to
progress in the Benders’ algorithm by generating good cuts.

Exploration of methods for calculating upper bounds.

Future works

Addressing high-dimensional uncertainty (e.g., complex
networks in Unit Commitment).

Improving the formulation of the master problem.

Extending DRO to a multi-stage framework.
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