Methods to obtain UB

Computational experiments

Solving a convex quadratic maximization problem appearing in some distributionally robust problem

Mathis Azéma (CERMICS)

Supervisors: Vincent Leclère, Wim Van Ackooij (EDF R&D)

ROADEF

February 28th, 2025

École nationale des ponts et chaussées

Origin	of t	he qi	uadrat	ic pro	blem
0000	000	00			

Methods to obtain UB

Computational experiments

$$\max_{x \in \mathbb{R}^{n}, y \in \mathbb{R}^{m}} \quad d^{\top}y + c^{\top}x + \|x\|_{2}^{2}$$

s.t.
$$Ax + Ty = b,$$
$$x \ge 0, \ y \ge 0$$

- → Appears as the subproblem in a Benders' decomposition for solving a Distributionally Robust Optimization (DRO) problem.
- \rightarrow Optimality \implies LB + UB
- \rightarrow Problem is NP-Hard.
- → Generate some cuts and calculate the UB to prove the optimality is sufficient.

Origin	of t	he qi	uadrat	ic pro	blem
0000	000	00			

Methods to obtain UB

Computational experiments

$$\max_{x \in \mathbb{R}^{n}, y \in \mathbb{R}^{m}} \quad d^{\top}y + c^{\top}x + \|x\|_{2}^{2}$$

s.t.
$$Ax + Ty = b,$$
$$x \ge 0, \ y \ge 0$$

- → Appears as the subproblem in a Benders' decomposition for solving a Distributionally Robust Optimization (DRO) problem.
- \rightarrow Optimality \implies LB + UB
- \rightarrow Problem is NP-Hard.
- → Generate some cuts and calculate the UB to prove the optimality is sufficient.

Origin	of t	he qi	uadrat	ic pro	blem
0000	000	00			

Methods to obtain UB

Computational experiments

$$\max_{x \in \mathbb{R}^{n}, y \in \mathbb{R}^{m}} \quad d^{\top}y + c^{\top}x + \|x\|_{2}^{2}$$

s.t.
$$Ax + Ty = b,$$
$$x \ge 0, y \ge 0$$

- → Appears as the subproblem in a Benders' decomposition for solving a Distributionally Robust Optimization (DRO) problem.
- \rightarrow Optimality \implies LB + UB
- \rightarrow Problem is NP-Hard.
- → Generate some cuts and calculate the UB to prove the optimality is sufficient.

Origin	of t	he qi	uadrat	ic pro	blem
0000	000	00			

$$\max_{x \in \mathbb{R}^{n}, y \in \mathbb{R}^{m}} \quad d^{\top}y + c^{\top}x + \|x\|_{2}^{2}$$

s.t.
$$Ax + Ty = b,$$
$$x \ge 0, \ y \ge 0$$

- → Appears as the subproblem in a Benders' decomposition for solving a Distributionally Robust Optimization (DRO) problem.
- \rightarrow Optimality \implies LB + UB
- \rightarrow Problem is NP-Hard.
- $\rightarrow\,$ Generate some cuts and calculate the UB to prove the optimality is sufficient.

Origin	of the	e quadratic	problem
0000	0000		

Methods to obtain UB

Computational experiments

Contents

Origin of the quadratic problem

- Unit Commitment
- Distributionnally Robust Optimization

2 Linearization

- Frank-Wolfe Algorithm
- Starting point of Frank-Wolfe Algorithm

3 Methods to obtain Upper Bounds

- KKT reformulation
- PSD relaxation
- Piecewise upper approximation

Origin	of the	e quadratic	problem
0000	0000	0	

Methods to obtain UB

Computational experiments

Contents

Origin of the quadratic problem

- Unit Commitment
- Distributionnally Robust Optimization

Linearization

- Frank-Wolfe Algorithm
- Starting point of Frank-Wolfe Algorithm

3 Methods to obtain Upper Bounds

- KKT reformulation
- PSD relaxation
- Piecewise upper approximation

Origin	of the	quadratic	problem
0000	00000		

Methods to obtain UB

Computational experiments

Contents

1 Origin of the quadratic problem

- Unit Commitment
- Distributionnally Robust Optimization

2 Linearization

- Frank-Wolfe Algorithm
- Starting point of Frank-Wolfe Algorithm

3 Methods to obtain Upper Bounds

- KKT reformulation
- PSD relaxation
- Piecewise upper approximation

Deterministic UC Problem

- \mathcal{M} : set of units
- T: time horizon
- $d \in \mathbb{R}^T$: demand vector
- x_i: commitment variables (binary).
- *y_i*: production variables (continuous).

$$\min_{x_i, y_i} \quad \sum_{i \in \mathcal{M}} c_i^\top x_i + \sum_{i \in \mathcal{M}} b_i^\top y_i \\ s.t. \quad F_i x_i \ge f_i \qquad \forall i \in \mathcal{M} \\ H_i y_i \ge h_i \qquad \forall i \in \mathcal{M} \\ A_i x_i + B_i y_i \ge g_i \qquad \forall i \in \mathcal{M} \\ \sum_{i \in \mathcal{M}} y_i = d \\ x_i \in \{0, 1\}^{m_i \times T}, \quad y_i \in \mathbb{R}_+^T$$

2-stage UC Problem under uncertainty

• Uncertainty on the demand.

- 2-stage assumption:
 - 1st stage: commitment variables (binary)
 - 2nd stage: production variables (continuous)

$$\min_{\substack{x_i, y_i }} c^\top x + b^\top y \\ s.t. \quad x \in X \\ y_i \in Y_i(x_i) \quad \forall i \in \mathcal{M} \\ \sum_{i \in \mathcal{M}} y_i = \mathbf{d} ?$$

2-stage UC Problem under uncertainty

- Uncertainty on the demand.
- 2-stage assumption:
 - 1st stage: commitment variables (binary)
 - 2nd stage: production variables (continuous)

$$egin{aligned} \min_{x_i,y_i} & c^ op x + b^ op y \ s.t. & x \in X \ & y_i \in Y_i(x_i) & orall i \in \mathcal{M} \ & \sum_{i \in \mathcal{M}} y_i = d \end{aligned}$$

2-stage UC Problem under uncertainty

- Uncertainty on the demand.
- 2-stage assumption:
 - 1st stage: commitment variables (binary)
 - 2nd stage: production variables (continuous)

$$\min_{x_i} \quad c^\top x + \min_{\substack{y_i: y_i \in Y_i(x_i) \\ \sum_{i \in \mathcal{M}} y_i = d}} b^\top y$$

s.t. $x \in X$

2-stage UC Problem under uncertainty

- Uncertainty on the demand.
- 2-stage assumption:
 - 1st stage: commitment variables (binary)
 - 2nd stage: production variables (continuous)

 $\min_{x_i} \quad c^\top x + Q(x, d) \\ s.t. \quad x \in X$

Q(x, d): recourse function representing the optimal cost of the second stage, considering which units are on or off (first stage) and the demand d

$$Q(x, d) = \min_{y} \quad b^{\top}y \qquad = \max_{\alpha, \beta, \gamma} \alpha^{\top}d + \beta^{\top}x + \gamma$$
$$y_{i} \in Y_{i}(x_{i}) \qquad (\alpha, \beta, \gamma) \in \Lambda$$
$$\sum_{i \in \mathcal{M}} y_{i} = d$$

Contents

1 Origin of the quadratic problem

- Unit Commitment
- Distributionnally Robust Optimization

2 Linearization

- Frank-Wolfe Algorithm
- Starting point of Frank-Wolfe Algorithm

3 Methods to obtain Upper Bounds

- KKT reformulation
- PSD relaxation
- Piecewise upper approximation

Distributionnally Robust Optimization

$$\min_{x} \quad c^{\top}x + \max_{\mathbb{Q}\in\mathcal{P}} \mathbb{E}_{\xi\sim\mathbb{Q}}[Q(x,\xi)]$$

s.t. $x_i \in X_i, \quad \forall i \in \mathcal{M}$

- If $\mathcal{P} = \{\mathbb{P}_0\}$, then the DRO problem is equal to the risk-neutral one.
- If \mathcal{P} includes all distributions supported on \mathcal{U} , then the DRO problem is equivalent to the robust optimization (RO) problem with \mathcal{U} as the uncertainty set.
- \implies How should we select \mathcal{P} ?

Distributionnally Robust Optimization

$$egin{aligned} \min_{x} & c^{ op}x + \max_{\mathbb{Q}\in\mathcal{P}} \mathbb{E}_{\xi\sim\mathbb{Q}}[Q(x,\xi)] \ s.t. & x_i\in X_i, \quad orall i\in\mathcal{M} \end{aligned}$$

- If $\mathcal{P} = \{\mathbb{P}_0\}$, then the DRO problem is equal to the risk-neutral one.
- If \mathcal{P} includes all distributions supported on \mathcal{U} , then the DRO problem is equivalent to the robust optimization (RO) problem with \mathcal{U} as the uncertainty set.
- \implies How should we select \mathcal{P} ?

Distributionnally Robust Optimization

$$egin{aligned} \min_{x} & c^{ op}x + \max_{\mathbb{Q}\in\mathcal{P}} \mathbb{E}_{\xi\sim\mathbb{Q}}[Q(x,\xi)] \ s.t. & x_i\in X_i, \quad orall i\in\mathcal{M} \end{aligned}$$

- If $\mathcal{P} = \{\mathbb{P}_0\}$, then the DRO problem is equal to the risk-neutral one.
- If *P* includes all distributions supported on *U*, then the DRO problem is equivalent to the robust optimization (RO) problem with *U* as the uncertainty set.

Distributionnally Robust Optimization

$$egin{aligned} \min_{x} & c^{ op}x + \max_{\mathbb{Q}\in\mathcal{P}} \mathbb{E}_{\xi\sim\mathbb{Q}}[Q(x,\xi)] \ s.t. & x_i\in X_i, \quad orall i\in\mathcal{M} \end{aligned}$$

- If $\mathcal{P} = \{\mathbb{P}_0\}$, then the DRO problem is equal to the risk-neutral one.
- If *P* includes all distributions supported on *U*, then the DRO problem is equivalent to the robust optimization (RO) problem with *U* as the uncertainty set.
- \implies How should we select \mathcal{P} ?

Methods to obtain UB

Computational experiments

DRO Unit Commitment problem

Idea: ${\cal P}$ has to include distributions "close" to the empirical one. Wasserstein distance-based ambiguity sets

$$\mathcal{P} = \left\{ \mathbb{Q} \, | \, \mathsf{supp}(\mathbb{Q}) \subset \mathbb{R}^T, \ W_2(\mathbb{Q}, \mathbb{P}_0) \leq \theta
ight\}, \qquad \mathbb{P}_0 = rac{1}{N} \sum_{i \in [N]} \delta_{\zeta_i}$$

Linearization

Methods to obtain UB

Computational experiments

1

DRO Unit Commitment problem

Idea: ${\cal P}$ has to include distributions "close" to the empirical one. Wasserstein distance-based ambiguity sets

$$\mathcal{P} = \left\{ \mathbb{Q} \, | \, supp(\mathbb{Q}) \subset \mathbb{R}^{\mathsf{T}}, \, W_2(\mathbb{Q}, \mathbb{P}_0) \leq \theta \right\}, \qquad \mathbb{P}_0 = \frac{1}{\mathsf{N}} \sum_{i \in [\mathsf{N}]} \delta_{\zeta_i}$$

Reformulation DRO Unit Commitment problem¹:

$$\min_{x} c^{\top}x + \max_{\substack{\mathbb{Q}: W_2(\mathbb{Q}, \mathbb{P}_0) \leq \theta \\ supp(\mathbb{Q}) \subset \mathbb{R}^{T}}} \mathbb{E}_{\mathbb{Q}}[Q(x, \xi)]$$
s.t. $x \in X$

¹Gao and Kleywegt 2016.

Linearization

Methods to obtain UB

Computational experiments

1

DRO Unit Commitment problem

Idea: ${\cal P}$ has to include distributions "close" to the empirical one. Wasserstein distance-based ambiguity sets

$$\mathcal{P} = \left\{ \mathbb{Q} \, | \, \mathsf{supp}(\mathbb{Q}) \subset \mathbb{R}^{\mathcal{T}}, \, W_2(\mathbb{Q}, \mathbb{P}_0) \leq \theta \right\}, \qquad \mathbb{P}_0 = \frac{1}{N} \sum_{i \in [N]} \delta_{\zeta_i}$$

Reformulation DRO Unit Commitment problem¹: $\min_{x,\lambda\geq 0} \quad c^{\top}x + \lambda\theta^{2} + \frac{1}{N} \sum_{i=1}^{N} \sup_{\xi\in\mathbb{R}^{T}} \left(Q(x,\xi) - \lambda \|\xi - \zeta_{i}\|_{2}^{2}\right)$ s.t. $x \in X$

¹Gao and Kleywegt 2016.

Methods to obtain UB

Computational experiments

1

DRO Unit Commitment problem

Idea: ${\cal P}$ has to include distributions "close" to the empirical one. Wasserstein distance-based ambiguity sets

$$\mathcal{P} = \left\{ \mathbb{Q} \, | \, \mathsf{supp}(\mathbb{Q}) \subset \mathbb{R}^{\mathcal{T}}, \ W_2(\mathbb{Q}, \mathbb{P}_0) \leq \theta
ight\}, \qquad \mathbb{P}_0 = rac{1}{N} \sum_{i \in [N]} \delta_{\zeta_i}$$

Reformulation DRO Unit Commitment problem¹: $\min_{x,\lambda\geq 0} \quad c^{\top}x + \lambda\theta^{2} + \frac{1}{N}\sum_{i=1}^{N}\max_{\xi\in\mathbb{R}^{T},k\in[K]} \left(\alpha_{k}^{\top}\xi + \beta_{k}^{\top}x + \gamma_{k} - \lambda\|\xi - \zeta_{i}\|^{2}\right)$ s.t. $x \in X$

¹Gao and Kleywegt 2016.

Linearization

Methods to obtain UB

Computational experiments

1

DRO Unit Commitment problem

Idea: ${\cal P}$ has to include distributions "close" to the empirical one. Wasserstein distance-based ambiguity sets

$$\mathcal{P} = \left\{ \mathbb{Q} \, | \, \mathsf{supp}(\mathbb{Q}) \subset \mathbb{R}^{\mathcal{T}}, \ W_2(\mathbb{Q}, \mathbb{P}_0) \leq \theta
ight\}, \qquad \mathbb{P}_0 = rac{1}{N} \sum_{i \in [N]} \delta_{\zeta_i}$$

Reformulation DRO Unit Commitment problem¹:

$$\min_{\substack{x,\lambda\geq 0}} c^{\top}x + \lambda\theta^2 + \frac{1}{N}\sum_{i=1}^N \max_{k\in[K]} \left(\beta_k^{\top}x + \gamma_k + \max_{\xi\in\mathbb{R}^T} (\alpha_k^{\top}\xi - \lambda\|\xi - \zeta_i\|^2)\right)$$

s.t. $x \in X$

¹Gao and Kleywegt 2016.

Linearization

Methods to obtain UB

Computational experiments

1

DRO Unit Commitment problem

Idea: ${\cal P}$ has to include distributions "close" to the empirical one. Wasserstein distance-based ambiguity sets

$$\mathcal{P} = \left\{ \mathbb{Q} \, | \, \mathsf{supp}(\mathbb{Q}) \subset \mathbb{R}^{\mathcal{T}}, \ W_2(\mathbb{Q}, \mathbb{P}_0) \leq \theta
ight\}, \qquad \mathbb{P}_0 = rac{1}{N} \sum_{i \in [N]} \delta_{\zeta_i}$$

Reformulation DRO Unit Commitment problem¹:

$$\min_{x,\lambda \ge 0} \quad c^{\top}x + \lambda\theta^2 + \frac{1}{N} \sum_{i=1}^N \max_{k \in [K]} \left(\beta_k^{\top}x + \gamma_k + \alpha_k^{\top}\zeta_i + \frac{\|\alpha_k\|_2^2}{4\lambda} \right)$$

s.t. $x \in X$

¹Gao and Kleywegt 2016.

Linearization

Methods to obtain UB

Computational experiments

1

DRO Unit Commitment problem

Idea: ${\cal P}$ has to include distributions "close" to the empirical one. Wasserstein distance-based ambiguity sets

$$\mathcal{P} = \left\{ \mathbb{Q} \, | \, \mathsf{supp}(\mathbb{Q}) \subset \mathbb{R}^{\mathcal{T}}, \, W_2(\mathbb{Q}, \mathbb{P}_0) \leq \theta \right\}, \qquad \mathbb{P}_0 = \frac{1}{N} \sum_{i \in [N]} \delta_{\zeta_i}$$

Reformulation DRO Unit Commitment_problem¹:

$$\min_{\substack{x,\lambda \ge 0, z \ge 0, w \ge 0}} c^\top x + w\theta^2 + \frac{1}{N} \sum_{i=1}^N z_i$$
s.t. $x \in X$

$$\| (2, w - \lambda) \|_2 \le w + \lambda$$

$$z_i \ge \left(\alpha_k^\top \zeta_i + \beta_k^\top x + \gamma_k + \frac{\lambda \|\alpha_k\|_2^2}{4} \right) \quad \forall k \in [K]$$

¹Gao and Kleywegt 2016.

Linearization

Methods to obtain UB

Computational experiments

1

DRO Unit Commitment problem

Idea: ${\cal P}$ has to include distributions "close" to the empirical one. Wasserstein distance-based ambiguity sets

$$\mathcal{P} = \left\{ \mathbb{Q} \, | \, \mathsf{supp}(\mathbb{Q}) \subset \mathbb{R}^{\mathcal{T}}, \, W_2(\mathbb{Q}, \mathbb{P}_0) \leq \theta \right\}, \qquad \mathbb{P}_0 = \frac{1}{N} \sum_{i \in [N]} \delta_{\zeta_i}$$

Reformulation DRO Unit Commitment_problem¹:

$$\min_{\substack{x,\lambda \ge 0, z \ge 0, w \ge 0}} c^\top x + w\theta^2 + \frac{1}{N} \sum_{i=1}^N z_i$$

$$s.t. \quad x \in X$$

$$\| (2, w - \lambda) \|_2 \le w + \lambda$$

$$z_i \ge \left(\alpha_k^\top \zeta_i + \beta_k^\top x + \gamma_k + \frac{\lambda \|\alpha_k\|_2^2}{4} \right) \quad \forall k \in [K]$$

 \implies Benders' algorithm

¹Gao and Kleywegt 2016.

Benders algorithm DRO

Linearization

Methods to obtain UB

Computational experiments

Benders algorithm DRO

Methods to obtain UB

Computational experiments

Comparison risk-neutral/ DRO subproblems

Computational times on instance with 50 units and 1 random demand

 \implies dimension of the quadratic term: T = 24

- Problem: Directly solving it with Gurobi can be challenging.
- Idea: By using only "good" cuts (potentially suboptimal), we can often eliminate the current solution.

Comparison risk-neutral/ DRO subproblems

Computational times on instance with 50 units and 1 random demand

 \implies dimension of the quadratic term: T = 24

- Problem: Directly solving it with Gurobi can be challenging.
- Idea: By using only "good" cuts (potentially suboptimal), we can often eliminate the current solution.

Contents

Origin of the quadratic problem

- Unit Commitment
- Distributionnally Robust Optimization

2 Linearization

- Frank-Wolfe Algorithm
- Starting point of Frank-Wolfe Algorithm

3 Methods to obtain Upper Bounds

- KKT reformulation
- PSD relaxation
- Piecewise upper approximation

Contents

Origin of the quadratic problem

- Unit Commitment
- Distributionnally Robust Optimization

2 Linearization

- Frank-Wolfe Algorithm
- Starting point of Frank-Wolfe Algorithm

3 Methods to obtain Upper Bounds

- KKT reformulation
- PSD relaxation
- Piecewise upper approximation

Notations

Convex maximization problem: ("Hard" to solve)

$$\max_{\substack{x \in \mathbb{R}^{n}, y \in \mathbb{R}^{m}}} d^{\top}y + c^{\top}x + \|x\|_{2}^{2}$$
(P) s.t.
$$Ax + Ty = b,$$

$$x \ge 0, y \ge 0$$

Optimal value: v^* , Optimal solution: $(x^*, y^*) \leftarrow$ Optimal cut

Linearization: ("Easy" to solve)

$$\max_{\substack{x \in \mathbb{R}^n, y \in \mathbb{R}^m}} d^\top y + (c + 2\bar{x})^\top x - \|\bar{x}\|_2^2$$

$$(\mathcal{P}_{\ell}(\bar{x})) \quad \text{s.t.} \qquad Ax + Ty = b,$$

$$x \ge 0, y \ge 0$$

Optimal value: $v^{\epsilon}(\bar{x})$, Optimal solution: $s^{\epsilon}(\bar{x}) \leftarrow$

Mathis Azéma

Convex quadratic maximization problem

Notations

Convex maximization problem: ("Hard" to solve)

$$\max_{\substack{x \in \mathbb{R}^n, y \in \mathbb{R}^m \\ x \ge 0, y \ge 0}} d^\top y + c^\top x + \|x\|_2^2$$
(P) s.t.
$$Ax + Ty = b,$$

Optimal value: v^* , Optimal solution: $(x^*, y^*) \leftarrow$ Optimal cut

Linearization: ("Easy" to solve)

$$egin{aligned} & \max_{x\in\mathbb{R}^n,y\in\mathbb{R}^m} & d^ op y + (c+2ar x)^ op x - \|ar x\|_2^2 \ & (\mathcal{P}_\ell(ar x)) & ext{ s.t. } & Ax + Ty = b, \ & x\geq 0, \, y\geq 0 \end{aligned}$$

Optimal value: $v^{\ell}(\bar{x})$, Optimal solution: $s^{\ell}(\bar{x}) \leftarrow \text{Valid cut}$

Linearization

Methods to obtain UB

Computational experiments

Frank-Wolfe Algorithm

$$v(x,y) = d^{\top}y + c^{\top}x + ||x||_2^2$$

Choice of the step length α_k by solving:

 $\max_{\alpha \in [0,1]} v((x_k, y_k) + \alpha(p_k^x, p_k^y))$

⇒ By convexity, $\alpha_k \in \{0,1\}$ ⇒ $(x_{k+1}, y_{k+1}) = s^{\ell}(x_k)$. ⇒ The sequence $(v(x_k, y_k))_{k\geq 1}$ is strictly increasing. ⇒ Frank-Wolfe Algorithm terminates.

Linearization

Methods to obtain UB

Computational experiments

Frank-Wolfe Algorithm

Choice of the step length α_k by solving:

 $\max_{\alpha \in [0,1]} v((x_k, y_k) + \alpha(p_k^x, p_k^y))$

⇒ By convexity, $\alpha_k \in \{0,1\}$ ⇒ $(x_{k+1}, y_{k+1}) = s^{\ell}(x_k)$. ⇒ The sequence $(v(x_k, y_k))_{k\geq 1}$ is strictly increasing. ⇒ Frank-Wolfe Algorithm terminates.
Linearization

Methods to obtain UB

Computational experiments

Frank-Wolfe Algorithm

Choice of the step length α_k by solving:

 $\max_{\alpha \in [0,1]} v((x_k, y_k) + \alpha(p_k^x, p_k^y))$

⇒ By convexity, $\alpha_k \in \{0,1\}$ ⇒ $(x_{k+1}, y_{k+1}) = s^{\ell}(x_k)$. ⇒ The sequence $(v(x_k, y_k))_{k\geq 1}$ is strictly increasing. ⇒ Frank-Wolfe Algorithm terminates.

Linearization

Methods to obtain UB

Computational experiments

Frank-Wolfe Algorithm

Choice of the step length α_k by solving:

 $\max_{\alpha \in [0,1]} v((x_k, y_k) + \alpha(p_k^x, p_k^y))$

⇒ By convexity, $\alpha_k \in \{0,1\}$ ⇒ $(x_{k+1}, y_{k+1}) = s^{\ell}(x_k)$. ⇒ The sequence $(v(x_k, y_k))_{k\geq 1}$ is strictly increasing. ⇒ Frank-Wolfe Algorithm terminates.

Linearization

Methods to obtain UB

Computational experiments

Frank-Wolfe Algorithm

$$v(x,y) = d^{\top}y + c^{\top}x + ||x||_2^2$$

Choice of the step length α_k by solving:

 $\max_{\alpha \in [0,1]} v((x_k, y_k) + \alpha(p_k^x, p_k^y))$

⇒ By convexity, $\alpha_k \in \{0,1\}$ ⇒ $(x_{k+1}, y_{k+1}) = s^{\ell}(x_k)$. ⇒ The sequence $(v(x_k, y_k))_{k\geq 1}$ is strictly increasing. ⇒ Frank-Wolfe Algorithm terminates.

Linearization

Methods to obtain UB

Computational experiments

Frank-Wolfe Algorithm

$$v(x,y) = d^{\top}y + c^{\top}x + ||x||_2^2$$

Choice of the step length α_k by solving:

 $\max_{\alpha \in [0,1]} v((x_k, y_k) + \alpha(p_k^x, p_k^y))$

 $\implies \text{By convexity, } \alpha_k \in \{0,1\} \implies (x_{k+1}, y_{k+1}) = s^{\ell}(x_k).$ $\implies \text{The sequence } (v(x_k, y_k))_{k \ge 1} \text{ is strictly increasing.}$ $\implies \text{Frank-Wolfe Algorithm terminates.}$

Linearization

Methods to obtain UB

Computational experiments

Frank-Wolfe Algorithm

$$v(x,y) = d^{\top}y + c^{\top}x + ||x||_2^2$$

Choice of the step length α_k by solving:

$$\max_{\alpha \in [0,1]} \nu((x_k, y_k) + \alpha(p_k^x, p_k^y))$$

 $\implies \text{By convexity, } \alpha_k \in \{0,1\} \implies (x_{k+1}, y_{k+1}) = s^{\ell}(x_k).$ $\implies \text{The sequence } (v(x_k, y_k))_{k \ge 1} \text{ is strictly increasing.}$ $\implies \text{Frank-Wolfe Algorithm terminates.}$

Mathis Azéma

Convex quadratic maximization problem

Linearization

Methods to obtain UB

Computational experiments

Frank-Wolfe Algorithm

Choice of the step length α_k by solving:

$$\max_{\alpha \in [0,1]} \nu((x_k, y_k) + \alpha(p_k^x, p_k^y))$$

⇒ By convexity, $\alpha_k \in \{0,1\}$ ⇒ $(x_{k+1}, y_{k+1}) = s^{\ell}(x_k)$. ⇒ The sequence $(v(x_k, y_k))_{k\geq 1}$ is strictly increasing.

 \Rightarrow Frank-Wolfe Algorithm terminates.

Linearization

Methods to obtain UB

Computational experiments

Frank-Wolfe Algorithm

Choice of the step length α_k by solving:

$$\max_{\alpha \in [0,1]} \nu((x_k, y_k) + \alpha(p_k^x, p_k^y))$$

 \implies By convexity, $\alpha_k \in \{0,1\} \implies (x_{k+1}, y_{k+1}) = s^{\ell}(x_k).$

- \implies The sequence $(v(x_k, y_k))_{k\geq 1}$ is strictly increasing.
- \implies Frank-Wolfe Algorithm terminates.

Origin	of th	e quac	Iratic	problem
0000	0000			

Linearization

Methods to obtain UB

Computational experiments

Contents

Origin of the quadratic problem

- Unit Commitment
- Distributionnally Robust Optimization

2 Linearization

- Frank-Wolfe Algorithm
- Starting point of Frank-Wolfe Algorithm
- 3 Methods to obtain Upper Bounds
 - KKT reformulation
 - PSD relaxation
 - Piecewise upper approximation

4 Computational experiments

1st starting point strategy: Sampling

Attraction field of the face F:

 $P_x(F) = \{\bar{x} \text{ s.t. } F \text{ is the set of optimal solutions of}$ the linearized problem at $\bar{x}\}$

The extreme point (x, y) is a local optimum of the quadratic convex maximization problem if and only if x belongs to the attraction field of (x, y).

Figure: Maximizing $||x||_2^2$ \implies FW algorithm finds a local optimum.

(0, 0)

(-0.6, 0.2)

(1.4, 0.2)

2nd starting point strategy: Discretize the space

Proposition

Let \bar{x} and v(x, y) defined by :

$$v(x,y) = d^{\top}y + c^{\top}x + ||x||_2^2$$

the following inequality holds:

$$v^{\ell}(ar{x}) \leq v(s^{\ell}(ar{x})) \leq v^{*} \leq v^{\ell}(ar{x}) + \|ar{x} - x^{*}\|^{2}.$$

Corollary

Let $\varepsilon > 0$ and $X \subset \mathbb{R}^n$ such that:

 $\max_{x \in P} dist(x, X) \le \varepsilon \qquad dist(x, X) = \min_{\bar{x} \in X} \|x - \bar{x}\|_2$

Define $v^{\ell}(X) = \max_{x \in X} v^{\ell}(x)$. Then, the following inequalities hold:

 $v^{\ell}(X) \le v^* \le \varepsilon^2 + v^{\ell}(X)$

2nd starting point strategy: Discretize the space

Proposition

Let \bar{x} and v(x, y) defined by :

$$v(x,y) = d^{\top}y + c^{\top}x + ||x||_2^2$$

the following inequality holds:

$$v^\ell(\bar{x}) \leq v(s^\ell(\bar{x})) \leq v^* \leq \boxed{v^\ell(\bar{x}) + \|\bar{x} - x^*\|^2}. \leftarrow \mathsf{Upper \ bound \ for \ the \ MP}$$

Corollary

```
Let \varepsilon > 0 and X \subset \mathbb{R}^n such that:
```

 $\max_{x \in P} dist(x, X) \le \varepsilon \qquad dist(x, X) = \min_{\bar{x} \in X} \|x - \bar{x}\|_2$

Define $v^{\ell}(X) = \max_{x \in X} v^{\ell}(x)$. Then, the following inequalities hold:

2nd starting point strategy: Discretize the space

Proposition

Let \bar{x} and v(x, y) defined by :

$$v(x,y) = d^{\top}y + c^{\top}x + ||x||_2^2$$

the following inequality holds:

$$v^\ell(\bar{x}) \leq v(s^\ell(\bar{x})) \leq v^* \leq \boxed{v^\ell(\bar{x}) + \|\bar{x} - x^*\|^2}. \leftarrow \mathsf{Upper \ bound \ for \ the \ MP}$$

Corollary

Let $\varepsilon > 0$ and $X \subset \mathbb{R}^n$ such that:

$$\max_{x \in P} dist(x, X) \le \varepsilon \qquad dist(x, X) = \min_{\bar{x} \in X} \|x - \bar{x}\|_2$$

Define $v^{\ell}(X) = \max_{x \in X} v^{\ell}(x)$. Then, the following inequalities hold:

 $v^{\ell}(X) \leq v^* \leq \varepsilon^2 + v^{\ell}(X)$

Corollary

Let
$$\varepsilon > 0$$
 and $X \subset \mathbb{R}^n$ such that:

$$\max_{x \in P} dist(x, X) \le \varepsilon \qquad dist(x, X) = \min_{\bar{x} \in X} ||x - \bar{x}||_2$$
Define $v^{\ell}(X) = \max_{x \in X} v^{\ell}(x)$. Then, the following inequalities hold:
 $v^{\ell}(X) \le v^* \le \varepsilon^2 + v^{\ell}(X)$

 $w^{\ell}(X) = \max_{\bar{x}, x, y} \quad d^{\top}y + (c + 2\bar{x})^{\top}x - \|\bar{x}\|_{2}^{2}$

s.t. Ax + Ty = b

 \Rightarrow Linearization through binary variables δ_k^i \Rightarrow MILP

Corollary

Let
$$\varepsilon > 0$$
 and $X \subset \mathbb{R}^n$ such that:

$$\max_{x \in P} dist(x, X) \le \varepsilon \qquad dist(x, X) = \min_{\bar{x} \in X} ||x - \bar{x}||_2$$
Define $v^{\ell}(X) = \max_{x \in X} v^{\ell}(x)$. Then, the following inequalities hold:
 $v^{\ell}(X) \le v^* \le \varepsilon^2 + v^{\ell}(X)$

 $v^{\ell}(X) = \max_{\bar{x}, x, y} \quad d^{\top}y + (c + 2\bar{x})^{\top}x - \|\bar{x}\|_{2}^{2}$

s.t. Ax + Ty = b

 $\begin{array}{l} \Longrightarrow \quad \text{Linearization through binary variables } \delta^i_k \\ \Rightarrow \quad \text{MILP} \end{array}$

Corollary

Let
$$\varepsilon > 0$$
 and $X \subset \mathbb{R}^n$ such that:

$$\max_{x \in P} dist(x, X) \le \varepsilon \qquad dist(x, X) = \min_{\bar{x} \in X} ||x - \bar{x}||_2$$
Define $v^{\ell}(X) = \max_{x \in X} v^{\ell}(x)$. Then, the following inequalities hold:
 $v^{\ell}(X) \le v^* \le \varepsilon^2 + v^{\ell}(X)$

 $w^{\ell}(X) = \max_{\bar{x}, x, y} \quad d^{\top}y + (c + 2\bar{x})^{\top}x - \|\bar{x}\|_{2}^{2}$

s.t. Ax + Ty = b

⇒ Linearization through binary variables δ^i_k ⇒ MILP

Corollary

Let
$$\varepsilon > 0$$
 and $X \subset \mathbb{R}^n$ such that:

$$\max_{x \in P} dist(x, X) \le \varepsilon \qquad dist(x, X) = \min_{\bar{x} \in X} ||x - \bar{x}||_2$$
Define $v^{\ell}(X) = \max_{x \in X} v^{\ell}(x)$. Then, the following inequalities hold:
 $v^{\ell}(X) \le v^* \le \varepsilon^2 + v^{\ell}(X)$

Methods to obtain UB

Computational experiments

Adapted Benders' Algorithm

First case

Adapted Benders' Algorithm

Linearization

Methods to obtain UB

Computational experiments

Adapted Benders' Algorithm

Linearization

Methods to obtain UB

Computational experiments

Adapted Benders' Algorithm

Origin	of th	e quac	Iratic	problem
0000	0000			

Linearization

Computational experiments

Contents

Origin of the quadratic problem

- Unit Commitment
- Distributionnally Robust Optimization

2 Linearization

- Frank-Wolfe Algorithm
- Starting point of Frank-Wolfe Algorithm

3 Methods to obtain Upper Bounds

- KKT reformulation
- PSD relaxation
- Piecewise upper approximation

4 Computational experiments

Origin	of th	e quac	Iratic	problem
0000	0000			

Linearization

Methods to obtain UB

Computational experiments

Contents

Origin of the quadratic problem

- Unit Commitment
- Distributionnally Robust Optimization

2 Linearization

- Frank-Wolfe Algorithm
- Starting point of Frank-Wolfe Algorithm

3 Methods to obtain Upper Bounds

- KKT reformulation
- PSD relaxation
- Piecewise upper approximation

4 Computational experiments

KKT reformulation

Structure of Oracle problem for the Unit commitment:

$$\max_{\substack{x \in \mathbb{R}^{n}, y \in \mathbb{R}^{m}_{+}}} d^{\top}y + c^{\top}x + \|x\|_{2}^{2}$$

s.t. $x + T_{i}y_{i} = b_{i}, \quad \forall i$
 $y \ge 0$

- KKT conditions \implies MILP.
- \rightarrow **Advantage:** Provide optimal solution.
- \rightarrow **Drawback:** Large number of binary variables.
- ightarrow Worst than Gurobi solving directly the quadratic problem

KKT reformulation

Structure of Oracle problem for the Unit commitment:

$$\max_{\substack{x \in \mathbb{R}^{n}, y \in \mathbb{R}^{m}_{+}}} d^{\top}y + c^{\top}x + \|x\|_{2}^{2}$$

s.t. $x + T_{i}y_{i} = b_{i}, \quad \forall i$
 $y \ge 0$

- KKT conditions \implies MILP.
- → **Advantage:** Provide optimal solution.
- \rightarrow **Drawback:** Large number of binary variables.
- ightarrow Worst than Gurobi solving directly the quadratic problem

KKT reformulation

Structure of Oracle problem for the Unit commitment:

$$\max_{\substack{x \in \mathbb{R}^{n}, y \in \mathbb{R}^{m}_{+}}} d^{\top}y + c^{\top}x + \|x\|_{2}^{2}$$

s.t. $x + T_{i}y_{i} = b_{i}, \quad \forall i$
 $y \ge 0$

- KKT conditions \implies MILP.
- \rightarrow **Advantage:** Provide optimal solution.
- → **Drawback:** Large number of binary variables.
- ightarrow Worst than Gurobi solving directly the quadratic problem

Origin	of th	e quac	Iratic	problem
0000	0000			

Linearization

Methods to obtain UB

Computational experiments

Contents

Origin of the quadratic problem

- Unit Commitment
- Distributionnally Robust Optimization

2 Linearization

- Frank-Wolfe Algorithm
- Starting point of Frank-Wolfe Algorithm

3 Methods to obtain Upper Bounds

- KKT reformulation
- PSD relaxation
- Piecewise upper approximation

4 Computational experiments

Linearization

Methods to obtain UB

Computational experiments

PSD relaxation

$$\max_{\substack{x \in \mathbb{R}^{n}, y \in \mathbb{R}^{m}_{+}}} d^{\top}y + c^{\top}x + \|x\|_{2}^{2}$$

s.t. $x + T_{i}y_{i} = b_{i}, \quad \forall i$
 $y \ge 0$

Linearization

Methods to obtain UB

Computational experiments

PSD relaxation

$$\max_{\substack{x \in \mathbb{R}^n, y \in \mathbb{R}^m_+ \\ \text{s.t.}}} d^\top y + c^\top x + \|x\|_2^2$$

s.t. $x + T_i y_i = b_i, \quad \forall i \\ y \ge 0$

PSD relaxation first order:

$$\max_{x \in \mathbb{R}^{n}, y \in \mathbb{R}^{m}_{+}} \quad d^{\top}y + c^{\top}x + Tr(X)$$

s.t. $x + T_{i}y_{i} = b_{i}, \qquad \forall i$
 $y \ge 0, X = \begin{bmatrix} 1 & x^{\top} \\ x & xx^{\top} \end{bmatrix}$

Linearization

Methods to obtain UB

Computational experiments

PSD relaxation

$$\max_{x \in \mathbb{R}^{n}, y \in \mathbb{R}^{m}_{+}} \quad d^{\top}y + c^{\top}x + \|x\|_{2}^{2}$$

s.t.
$$x + T_{i}y_{i} = b_{i}, \quad \forall i$$
$$y \ge 0$$

PSD relaxation first order:

$$\begin{array}{ll} \max_{y \in \mathbb{R}^m_+} & d^\top y + c^\top X_{1,.} + \mathit{Tr}(X) \\ \text{s.t.} & X_{1,.} + \mathit{T}_i y_i = b_i, \qquad \forall i \\ & X \succeq 0 \\ & y \geq 0 \end{array}$$

Linearization

Methods to obtain UB

Computational experiments

PSD relaxation

$$\max_{x \in \mathbb{R}^{n}, y \in \mathbb{R}^{m}_{+}} \quad d^{\top}y + c^{\top}x + \|x\|_{2}^{2}$$

s.t.
$$x + T_{i}y_{i} = b_{i}, \quad \forall i$$
$$y \ge 0$$

PSD relaxation first order:

$$\begin{array}{ll} \max_{y \in \mathbb{R}^m_+} & d^\top y + c^\top X_{1,.} + \mathit{Tr}(X) \\ \text{s.t.} & X_{1,.} + \mathit{T}_i y_i = b_i, \qquad \forall i \\ & X \succeq 0 \\ & y \ge 0 \end{array}$$

- \rightarrow **Advantage:** Tractable convex problem.
- ightarrow Drawback: Optimal value: $+\infty$
- ightarrow Worst than Gurobi solving directly the quadratic problem

Linearization

Methods to obtain UB

Computational experiments

PSD relaxation

$$\max_{x \in \mathbb{R}^{n}, y \in \mathbb{R}^{m}_{+}} d^{\top}y + c^{\top}x + ||x||_{2}^{2}$$

s.t. $x + T_{i}y_{i} = b_{i}, \quad \forall i$ (18a)
 $y \ge 0$

PSD relaxation second order:

- Idea: Consider a large PSD matrix that include product variables between x and y up to order 2.
- Multiply constraint (18a) by each variable x_t , $y_{i,t}$
- \rightarrow **Advantage:** Bounded convex problem and good relaxation.
- \rightarrow **Drawback:** Untractable with solvers like Mosek. PSD size: $O((NT)^2)$
- ightarrow Worst than Gurobi solving directly the quadratic problem

PSD relaxation

$$\max_{x \in \mathbb{R}^n, y \in \mathbb{R}^m_+} \quad d^\top y + c^\top x + \|x\|_2^2$$
s.t. $x + T_i y_i = b_i, \quad \forall i$
 $y \ge 0$

Smaller PSD relaxation second order:

- Idea: Use smaller PSD matrices that include product variables between x_t and y up to order 2.
- \rightarrow **Advantage:** Bounded convex problem and good relaxation.
- \rightarrow **Drawback:** Untractable with solvers like Mosek. *T* PSD of size: $O(N^2)$
- ightarrow Worst than Gurobi solving directly the quadratic problem

Origin	of th	e quac	Iratic	problem
0000	0000			

Linearization

Computational experiments

Contents

Origin of the quadratic problem

- Unit Commitment
- Distributionnally Robust Optimization

2 Linearization

- Frank-Wolfe Algorithm
- Starting point of Frank-Wolfe Algorithm

3 Methods to obtain Upper Bounds

- KKT reformulation
- PSD relaxation
- Piecewise upper approximation

4 Computational experiments

inearization

Computational experiments

Piecewise upper approximation

Computational experiments

Computational experiments

Computational experiments

Computational experiments

Computational experiments

Methods to obtain UB ○○○○○○○●○

Computational experiments

Methods to obtain UB

Computational experiments

- MILPs.
- Number of binary variables increase at each iteration

Methods to obtain UB

Computational experiments

- MILPs.
- Number of binary variables increase at each iteration
- Convergence in few iterations.

Origin of the quadratic problem

Linearization

Methods to obtain UB ○○○○○○○○● Computational experiments

Adapted Benders' Algorithm

Origin of the quadratic problem

Linearization

Methods to obtain UB ○○○○○○○○● Computational experiments

Adapted Benders' Algorithm

Origin	of th	e quac	Iratic	problem
0000	0000			

Contents

Origin of the quadratic problem

- Unit Commitment
- Distributionnally Robust Optimization

2 Linearization

- Frank-Wolfe Algorithm
- Starting point of Frank-Wolfe Algorithm

3 Methods to obtain Upper Bounds

- KKT reformulation
- PSD relaxation
- Piecewise upper approximation

4 Computational experiments

Instances

• Source: SMS++/ EDF. Instances with generators (10, 20, 50) and only one random demand (dimension: T = 24)

• Source IEEE: 2 instances with network constraints:

- 14 thermal units and 4 buses \implies dimension of uncertainty: $4 \times T = 96$
- 54 generators and 118 buses \implies dimension of uncertainty: $118 \times T = 2832$

Instances

- Source: SMS++/ EDF. Instances with generators (10, 20, 50) and only one random demand (dimension: T = 24)
- Source IEEE: 2 instances with network constraints:
 - 14 thermal units and 4 buses \implies dimension of uncertainty: $4 \times T = 96$
 - 54 generators and 118 buses \implies dimension of uncertainty: 118 × T = 2832

n of the quadratic problem		Linearization 00000000		Methods to obtain UB 000000000		Computational experiments	
		SMS10	SMS20	SMS50	IEEE14	IEEE54	
	Units	10	20	50	14	54	
	ξ dimension	24	24	24	96	2832	
	FW	0.002	0.002	0.002	0.002	0.1	
	MILP start	0.03	0.05	0.4	0.05	15	
	MILP UB	0.1	0.07	0.5	0.05	15	
	Gurobi	0.2	0.5	0.75	0.1	15	

Table: Time comparison (s)

Time saved at each iteration \times Number of scenarios !

Mathis Azéma

Convex quadratic maximization problem

Methods to obtain UB

Convergence Analysis

Methods to obtain UB

Convergence Analysis

Convex quadratic maximization problem

Summary

- Analysis of an NP-hard problem that arises as the oracle problem in a Benders' decomposition for solving a DRO problem.
- Show how the Frank-Wolfe algorithm can be efficient to progress in the Benders' algorithm by generating good cuts.
- Exploration of methods for calculating upper bounds.

- Addressing high-dimensional uncertainty (e.g., complex networks in Unit Commitment).
- Improving the formulation of the master problem.
- Extending DRO to a multi-stage framework.

Summary

- Analysis of an NP-hard problem that arises as the oracle problem in a Benders' decomposition for solving a DRO problem.
- Show how the Frank-Wolfe algorithm can be efficient to progress in the Benders' algorithm by generating good cuts.
- Exploration of methods for calculating upper bounds.

- Addressing high-dimensional uncertainty (e.g., complex networks in Unit Commitment).
- Improving the formulation of the master problem.
- Extending DRO to a multi-stage framework.

Summary

- Analysis of an NP-hard problem that arises as the oracle problem in a Benders' decomposition for solving a DRO problem.
- Show how the Frank-Wolfe algorithm can be efficient to progress in the Benders' algorithm by generating good cuts.
- Exploration of methods for calculating upper bounds.

- Addressing high-dimensional uncertainty (e.g., complex networks in Unit Commitment).
- Improving the formulation of the master problem.
- Extending DRO to a multi-stage framework.

Summary

- Analysis of an NP-hard problem that arises as the oracle problem in a Benders' decomposition for solving a DRO problem.
- Show how the Frank-Wolfe algorithm can be efficient to progress in the Benders' algorithm by generating good cuts.
- Exploration of methods for calculating upper bounds.

- Addressing high-dimensional uncertainty (e.g., complex networks in Unit Commitment).
- Improving the formulation of the master problem.
- Extending DRO to a multi-stage framework.

Summary

- Analysis of an NP-hard problem that arises as the oracle problem in a Benders' decomposition for solving a DRO problem.
- Show how the Frank-Wolfe algorithm can be efficient to progress in the Benders' algorithm by generating good cuts.
- Exploration of methods for calculating upper bounds.

- Addressing high-dimensional uncertainty (e.g., complex networks in Unit Commitment).
- Improving the formulation of the master problem.
- Extending DRO to a multi-stage framework.

Summary

- Analysis of an NP-hard problem that arises as the oracle problem in a Benders' decomposition for solving a DRO problem.
- Show how the Frank-Wolfe algorithm can be efficient to progress in the Benders' algorithm by generating good cuts.
- Exploration of methods for calculating upper bounds.

- Addressing high-dimensional uncertainty (e.g., complex networks in Unit Commitment).
- Improving the formulation of the master problem.
- Extending DRO to a multi-stage framework.