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Two-stage Unit Commitment problem

min
x∈X

c⊤x + Eξ∼P[Q(x , ξ)]

Q(x , ξ) = max
α,β,γ

α⊤ξ + β⊤x + γ⊤d = max
k∈[K ]

α⊤
k ξ + β⊤

k x + γ⊤k d ,

s.t. (α, β, γ) ∈ Λ

M: set of units

T : time horizon

ξ ∈ RT : demand vector

xi : commitment variables.

yi : production variables.

Q(x , ξ) = min
y

C⊤y

s.t.Tixi +Wiyi = hi , ∀i∑
i∈M

yi ,t = ξt , ∀t
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Distributionally Robust Optimization

min
x∈X

c⊤x +max
Q∈P

Eξ∼Q[Q(x , ξ)]

Interest

Both Robust Optimization and Stochastic Optimization are special
cases of DRO.

Stochastic Optimization:

min
x∈X

c⊤x + Eξ∼P0 [Q(x , ξ)]

P = {P0}

Robust Optimization:

min
x∈X

c⊤x +max
ξ∈Z

Q(x , ξ)

P = {Q ∈ B(Z)}

=⇒ How should we select P?
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Wassertein-distance definition

(Wp(Q,P))p = inf
π∈P(Z,Z)

∫
Z×Z

∥ξ − ζ∥pdπ(ξ, ζ)

s.t.

∫
{ξ}×Z

dπ(ξ, ζ) = Q(ξ) ∀ξ ∈ Z∫
Z×{ζ}

dπ(ξ, ζ) = P(ζ) ∀ζ ∈ Z
P

Q
πP→Q(ξ, ζ)

P = {Q ∈ B(Z) |Wp(Q,P) ≤ θ}
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Wasserstein distance-based ambiguity sets

min
x∈X

c⊤x +max
Q∈P

Eξ∼Q[Q(x , ξ)] (D)

Idea: P has to include distributions “close” to the empirical one.

P = {Q ∈ B(Z) |Wp(Q,P0) ≤ θ}

Z : Support of the distributions.

Wp: Wasserstein distance of order p defined with the cost
function c(ξ, ζ) = ∥ξ − ζ∥.
P0 =

1
N

∑
i∈[N] δζi : empirical distribution
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Eξ∼Q[Q(x , ξ)] (D)

Idea: P has to include distributions “close” to the empirical one.

P = {Q ∈ B(Z) |Wp(Q,P0) ≤ θ}

Z : Support of the distributions.

Wp: Wasserstein distance of order p defined with the cost
function c(ξ, ζ) = ∥ξ − ζ∥.
P0 =

1
N

∑
i∈[N] δζi : empirical distribution

Stochastic Optimization:

min
x∈X

c⊤x + Eξ∼P0 [Q(x , ξ)]

θ = 0

Robust Optimization:

min
x∈X

c⊤x +max
ξ∈Z

Q(x , ξ)

θ = +∞
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Wasserstein distance-based ambiguity sets

min
x∈X

c⊤x +max
Q∈P

Eξ∼Q[Q(x , ξ)] (D)

Idea: P has to include distributions “close” to the empirical one.

P = {Q ∈ B(Z) |Wp(Q,P0) ≤ θ}

Z : Support of the distributions.

Wp: Wasserstein distance of order p defined with the cost
function c(ξ, ζ) = ∥ξ − ζ∥.
P0 =

1
N

∑
i∈[N] δζi : empirical distribution

Reformulation of problem (D) (Gao and Kleywegt 2016)

min
x∈X ,λ≥0

c⊤x + λθp +
1

N

∑
i∈[N]

max
ξ∈Z

(Q(x , ξ)− λ∥ξ − ζi∥p)
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Benders’ decomposition

min
x∈X ,λ≥0

c⊤x + λθp +
1

N

∑
i∈[N]

max
ξ∈Z

(Q(x , ξ)− λ∥ξ − ζi∥p)
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Benders’ decomposition

min
x∈X ,λ≥0,z

c⊤x + λθp +
1

N

∑
i∈[N]

zi

s.t. zi ≥ max
ξ∈Z

(Q(x , ξ)− λ∥ξ − ζi∥p) , ∀i
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Benders’ decomposition

min
x∈X ,λ≥0,z
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N

∑
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s.t. zi ≥ max
ξ∈Z

(Q(x , ξ)− λ∥ξ − ζi∥p) , ∀i
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α⊤
k ξ + β⊤

k x + γ⊤k d
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Benders’ decomposition

min
x∈X ,λ≥0,z

c⊤x + λθp +
1

N

∑
i∈[N]

zi

s.t. zi ≥ max
ξ∈Z,k∈[K ]

(
α⊤
k ξ + β⊤

k x + γ⊤k d − λ∥ξ − ζi∥p
)
, ∀i

Q(x , ξ) = max
k∈[K ]

α⊤
k ξ + β⊤

k x + γ⊤k d
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Benders’ decomposition

min
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c⊤x + λθp +
1

N

∑
i∈[N]

zi

s.t. zi ≥ β⊤
k x + γ⊤k d +max

ξ∈Z

(
α⊤
k ξ − λ∥ξ − ζi∥p

)
, ∀i , ∀k
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Benders’ decomposition

min
x∈X ,λ≥0,z

c⊤x + λθp +
1

N

∑
i∈[N]

zi

s.t. zi ≥ β⊤
k x + γ⊤k d +max

ξ∈Z

(
α⊤
k ξ − λ∥ξ − ζi∥p

)
︸ ︷︷ ︸

fi (αk , λ)

, ∀i , ∀k
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Benders’ decomposition

min
x∈X ,λ≥0,z

c⊤x + λθp +
1

N

∑
i∈[N]

zi

s.t. zi ≥ β⊤
k x + γ⊤k d +max

ξ∈Z

(
α⊤
k ξ − λ∥ξ − ζi∥p

)
︸ ︷︷ ︸

fi (αk , λ)

, ∀i , ∀k

Proposition

The function fi is convex.

Subproblem

max
α,β,γ

β⊤x∗ + γ⊤d + fi (α, λ
∗)

s.t. (α, β, γ) ∈ Λ

New constraint

zi ≥β⊤
k x

∗ + γ⊤k d

+ fi (αk , λ
∗) + ∂fi (αk , λ

∗)(λ− λ∗)
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Examples: P = {Q ∈ B(Z) |Wp(Q,P0) ≤ θ}

p = 1,∥.∥ = ∥.∥1,Z = RT

fi (α, λ) = max
ξ∈RT

α⊤ξ − λ∥ξ − ζi∥1

= α⊤ζi + I∥α∥∞≤λ

Master Problem

min
x∈X ,λ≥0,z

c⊤x + λθp +
1

N

∑
i∈[N]

zi

s.t. zi ≥ β⊤
k x + γ⊤k d + fi (αk , λ), ∀i , ∀k
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N
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k ζi + I∥αk∥∞≤λ, ∀i , ∀k
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Master Problem

min
x∈X ,z

c⊤x +
1

N

∑
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zi −→ No radius of DRO ball!
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k ζi , ∀i , ∀k

Mathis Azéma Two-stage DRO UC 29/07/25 7 / 27



A DRO Unit Commitment problem Adapted Benders algorithm Computational experiments

Examples: P = {Q ∈ B(Z) |Wp(Q,P0) ≤ θ}

p = 1,∥.∥ = ∥.∥1,Z = [ξ, ξ̄]

fi (α, λ) = max
ξ

α⊤ξ − λ∥ξ − ζi∥1

s.t. ξ ∈ [ξ, ξ̄]
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Examples: P = {Q ∈ B(Z) |Wp(Q,P0) ≤ θ}

p = 1,∥.∥ = ∥.∥1,Z = [ξ, ξ̄]

fi (α, λ) = max
ξ

α⊤ξ − λ1⊤u

s.t. ξ ∈ [ξ, ξ̄], u ≥ ξ − ζi , u ≥ ζi − ξ
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Examples: P = {Q ∈ B(Z) |Wp(Q,P0) ≤ θ}

p = 1,∥.∥ = ∥.∥1,Z = [ξ, ξ̄]

fi (α, λ) = max
ξ

α⊤ξ − λ1⊤u

s.t. ξ ∈ [ξ, ξ̄], u ≥ ξ − ζi , u ≥ ζi − ξ

Subproblem

max
α,β,γ,ξ,u

β⊤x∗ + γ⊤d + α⊤ξ − λ1⊤u

s.t. (α, β, γ) ∈ Λ

ξ ∈ [ξ, ξ̄]

u ≥ ξ − ζi −→ Linearization to obtain a MILP!

u ≥ ζi − ξ Gamboa et al. (2021)
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Examples: P = {Q ∈ B(Z) |Wp(Q,P0) ≤ θ}
p = 2,∥.∥ = ∥.∥2,Z = RT

fi (α, λ) = max
ξ∈RT

α⊤ξ − λ∥ξ − ζi∥22
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Examples: P = {Q ∈ B(Z) |Wp(Q,P0) ≤ θ}
p = 2,∥.∥ = ∥.∥2,Z = RT

fi (α, λ) = α⊤ζi +
∥α∥22
4λ
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Examples: P = {Q ∈ B(Z) |Wp(Q,P0) ≤ θ}
p = 2,∥.∥ = ∥.∥2,Z = RT

fi (α, λ) = α⊤ζi +
∥α∥22
4λ

Master Problem

min
x∈X ,z,λ≥0

c⊤x + λθ2 +
1

N

∑
i∈[N]

zi

s.t. zi ≥ β⊤
k x + γ⊤k d + fi (α, λ

∗), ∀i , ∀k

Subproblem

max
α,β,γ

β⊤x∗ + γ⊤d + fi (α, λ
∗)

s.t. (α, β, γ) ∈ Λ
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Examples: P = {Q ∈ B(Z) |Wp(Q,P0) ≤ θ}
p = 2,∥.∥ = ∥.∥2,Z = RT

fi (α, λ) = α⊤ζi +
∥α∥22
4λ

Master Problem

min
x∈X ,z,λ≥0

c⊤x + λθ2 +
1

N

∑
i∈[N]

zi

s.t. zi ≥ β⊤
k x + γ⊤k d + α⊤

k ζi +
∥αk∥22
4λ

, ∀i , ∀k

Subproblem

max
α,β,γ

β⊤x∗ + γ⊤d + α⊤ζi +
∥α∥22
4λ∗

s.t. (α, β, γ) ∈ Λ
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Examples: P = {Q ∈ B(Z) |Wp(Q,P0) ≤ θ}
p = 2,∥.∥ = ∥.∥2,Z = RT

fi (α, λ) = α⊤ζi +
∥α∥22
4λ

Master Problem

min
x∈X ,z,λ≥0

c⊤x +
θ2

λ
+

1

N

∑
i∈[N]

zi

s.t. zi ≥ β⊤
k x + γ⊤k d + α⊤

k ζi +
λ∥αk∥22

4
, ∀i , ∀k

Subproblem

max
α,β,γ

β⊤x∗ + γ⊤d + α⊤ζi +
λ∗∥α∥22

4

s.t. (α, β, γ) ∈ Λ

Mathis Azéma Two-stage DRO UC 29/07/25 9 / 27



A DRO Unit Commitment problem Adapted Benders algorithm Computational experiments

Comparison Wasserstein distances

min
x∈X

c⊤x +max
Q∈P

Eξ∼Q[Q(x , ξ)]

Definition (Worst-case Distribution)

A worst-case distribution P∗ is a distribution in P satisfying:

max
Q∈P

Eξ∼Q[Q(x , ξ)] = Eξ∼P∗ [Q(x , ξ)]

- It is useful to analyze this to identify which constraints to add to
P to improve the model.
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Comparison Wasserstein distances

min
x∈X

c⊤x +max
Q∈P

Eξ∼Q[Q(x , ξ)]

P = {Q ∈ B(Z) |Wp(Q,P0) ≤ θ} [λ]

Q(x , ξ) = max
k∈[K ]

α⊤
k ξ + β⊤

k x + γ⊤k d

P0 =
1

N

∑
i∈[N]

δζi

p Norm Z P∗ supp(P∗)

1 ∥.∥1 RT ̸ ∃ -

1 ∥.∥1 [ξ, ξ̄] ∃ ξt ∈ {ζi ,t , ξt , ξ̄t}

2 ∥.∥2 RT ∃ ξ ∈
⋃

k∈[K ]{ζi +
λ∗αk
2 }

- It is the only one with a worst-case distribution whose support
is unpredictable (depends on λ∗).
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Out of sample Costs

(a) Average costs out-of-sample (b) Computational time (s)
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Comparison risk-neutral/ DRO subproblems

Time spent in the subproblems

Subproblem Risk-Neutral
for each scenario i :

max
α,β,γ

α⊤ζi + β⊤x∗ + γ

s.t. (α, β, γ) ∈ Λ

LP

≈ 0.002s

Subproblem DRO
for each scenario i :

max
α,β,γ

α⊤ζi + β⊤x∗ + γ+f i (α,λ∗)

s.t. (α, β, γ) ∈ Λ

Convex maximization problem (NP-Hard)

≈ 0.5s

- If we have 100 iterations and 100 scenarios, we have to solve
10,000 subproblems.

- Idea: Use non-optimal dual solutions!
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Convex maximization problem (NP-Hard)

≈ 0.5s

- If we have 100 iterations and 100 scenarios, we have to solve
10,000 subproblems.

- Idea: Use non-optimal dual solutions!
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Notations

Non convex subproblem: (”Hard” to solve)

max
α,β,γ

β⊤xK + γ⊤d + fi (α, λ
K )

s.t. (α, β, γ) ∈ Λ

Optimal solution: (α∗, β∗) → Optimal cut

Idea

Every solution (α, β) of the subproblem gives a valid cut for
the master problem.

It is not necessary to solve the subproblem to optimality at
each iteration.
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Difference-of-Convex Algorithm (DCA)

g(α, β) = c⊤β + f (α)

α0

1 Choose a starting point α0.

2 Compute ∂f (αk).

3 Compute an optimal solution
sℓ(αk) ∈ argmax(α,β)∈Λ c

⊤β+ ∂f (αk)
⊤α.

4 αk+1 = sℓ(αk)

=⇒ The sequence (g(αk , βk))k≥1 is strictly increasing.
=⇒ Algorithm terminates and converges toward a local
maximum.
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Mathis Azéma Two-stage DRO UC 29/07/25 15 / 27



A DRO Unit Commitment problem Adapted Benders algorithm Computational experiments

Difference-of-Convex Algorithm (DCA)

g(α, β) = c⊤β + f (α)

α0

α1

α2

1 Choose a starting point α0.

2 Compute ∂f (αk).

3 Compute an optimal solution
sℓ(αk) ∈ argmax(α,β)∈Λ c

⊤β+ ∂f (αk)
⊤α.

4 αk+1 = sℓ(αk)

=⇒ The sequence (g(αk , βk))k≥1 is strictly increasing.
=⇒ Algorithm terminates and converges toward a local
maximum.
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1st starting point strategy: the non-DRO solution

f (α) = max
ξ∈Z

α⊤ξ − λ∥ξ − ζi∥p

∂f (0) ∈ argmax
ξ∈Z

−λ∥ξ − ζi∥p = {ζi}

Linearized problem with α0 = 0

max c⊤β + ∂f (α0)
⊤α

s.t. (α, β) ∈ Λ

Stochastic Optimization

max c⊤β + ζ⊤i α

s.t. (α, β) ∈ Λ

The DRO problem is, in general, “close” to the empirical one.

Starting with α0 = 0 is in general a good choice.
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2nd starting point strategy: Sampling

Proposition

The set of starting points α0 such that the DCA algorithm
converges to a global maximum has a non-zero measure.
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2nd starting point strategy: Sampling

Proposition

The set of starting points α0 such that the DCA algorithm
converges to a global maximum has a non-zero measure.

α1
0

α2
0

α3
0α4

0

α5
0

Randomly drawing the
starting point ensures
convergence almost surely.
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3rd starting point strategy: Lower approximation

Proposition

The DCA algorithm approximates the non-convex part by its
tangent at α0

f (α)
max
α,β

c⊤β + f (α) max
α,β

c⊤β + ∂f (ᾱ)⊤α

s.t. (α, β) ∈ Λ s.t. (α, β) ∈ Λ
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3rd starting point strategy: Lower approximation

Proposition

The DCA algorithm approximates the non-convex part by its
tangent at α0

f (α) max
α,β

c⊤β + f (α) max
α,β

c⊤β + ∂f (ᾱ)⊤α

s.t. (α, β) ∈ Λ s.t. (α, β) ∈ Λ

Improve the starting point by
approximating the non-convex part
by a piecewise linear approximation.

The problem becomes a MILP !
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Adapted Benders’ Algorithm

Master Problem:
Subset of constraints

Solve the subproblems for
each scenario at optimality

Master Problem:
Subset of constraints

Solve the subproblems for
each scenario with DCA
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KKT reformulation (f (α) = ∥α∥22)

max
α,β

c⊤β + f (α)

s.t. (α, β) ∈ Λ

KKT conditions =⇒ MILP.

→ Advantage: Provide optimal solution.

→ Drawback: Large number of binary variables.

→ Worst than Gurobi solving directly the quadratic problem
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PSD relaxation (f (α) = ∥α∥22)

max
α,β

c⊤β + ∥α∥22

s.t. (α, β) ∈ Λ
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PSD relaxation (f (α) = ∥α∥22)

max
α,β

c⊤β + ∥α∥22

s.t. (α, β) ∈ Λ

PSD relaxation first order:

max c⊤β + Tr(X )

s.t. (α, β) ∈ Λ

X =

[
1 α⊤

α αα⊤

]
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PSD relaxation (f (α) = ∥α∥22)

max
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PSD relaxation (f (α) = ∥α∥22)

max
α,β

c⊤β + ∥α∥22

s.t. (α, β) ∈ Λ

PSD relaxation first order:

max c⊤β + Tr(X )

s.t. (α, β) ∈ Λ

X ⪰ 0

→ Advantage: Tractable convex problem.

→ Drawback: Optimal value: +∞
→ Worst than Gurobi solving directly the quadratic problem
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PSD relaxation (f (α) = ∥α∥22)

max
α,β

c⊤β + ∥α∥22

s.t. (α, β) ∈ Λ

PSD relaxation second order:

Idea: Consider a large PSD matrix that include product
variables between x and y up to order 2.

→ Advantage: Bounded convex problem and good relaxation.

→ Drawback: Untractable with solvers like Mosek.

→ Worse than Gurobi solving directly the quadratic problem
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Piecewise linear upper approximation

f (α)Upper 1

α

max
α,β

c⊤β + f (α)

s.t. (α, β) ∈ Λ
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Piecewise linear upper approximation

f (α)

α∗
1

Upper 3

α∗
3

α

max
α,β

c⊤β + f (α)

s.t. (α, β) ∈ Λ

MILPs.
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Piecewise linear upper approximation

f (α)

α∗
1

Upper 3

α∗
3

α

max
α,β

c⊤β + f (α)

s.t. (α, β) ∈ Λ

MILPs.

Number of binary variables
increases at each iteration
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Piecewise linear upper approximation

f (α)

α∗
1

Upper 3

α∗
3

α

max
α,β

c⊤β + f (α)

s.t. (α, β) ∈ Λ

MILPs.

Number of binary variables
increases at each iteration

Convergence in a few
iterations.
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Methodology

→ Two test cases: one small, one large.

Small case: 24 hours, 3 units, 6 buses
Large case: 24 hours, 54 units, 118 buses

→ Before being able to solve the DRO problem, we first need to
be able to solve the risk-neutral version using Benders’
decomposition.

→ For the Unit Commitment, we use interval variables to model
whether a unit is on or off over a time interval (paper in
preparation).
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Small test case

(a) Average costs out-of-sample (b) Computational time (s)
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Large test case

(a) Average costs out-of-sample (b) Computational time (s)
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Conclusion

What I presented:

→ A framework for distributionally robust unit commitment
problems, highlighting why the 2-norm is more effective than
the 1-norm.

→ A novel method to solve the subproblems using DCA.

→ Computational experiments showing that the DRO model
outperforms the risk-neutral one.

Future work:

→ Conduct a large-scale comparison between DRO, RO, and SO
models on a comprehensive benchmark.

→ Extend the framework to multi-stage decision problems.

Thank you for your attention!
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