Solving a two-stage distributionally robust unit commitment model using Wasserstein distance

Mathis Azéma (ENPC, Paris, France)

Supervisors: Vincent Leclère, Wim Van Ackooij (EDF R&D)

ICSP

July 29th, 2025

1 / 27

- A DRO Unit Commitment problem
 - Two-stage DRO problem
 - Examples of DRO problems
 - Comparison DRO/risk-neutral
- Adapted Benders algorithm
 - Algorithm/DCA
 - Starting point
 - Ideas to obtain an Upper Bound
- 3 Computational experiments

- A DRO Unit Commitment problem
 - Two-stage DRO problem
 - Examples of DRO problems
 - Comparison DRO/risk-neutral
- Adapted Benders algorithm
 - Algorithm/DCA
 - Starting point
 - Ideas to obtain an Upper Bound
- 3 Computational experiments

- A DRO Unit Commitment problem
 - Two-stage DRO problem
 - Examples of DRO problems
 - Comparison DRO/risk-neutral
- 2 Adapted Benders algorithm
 - Algorithm/DCA
 - Starting point
 - Ideas to obtain an Upper Bound
- 3 Computational experiments

Two-stage Unit Commitment problem

$$\min_{x \in X} c^{\top} x + \mathbb{E}_{\xi \sim \mathbb{P}}[Q(x, \xi)]$$

$$Q(x,\xi) = \max_{\alpha,\beta,\gamma} \alpha^{\top} \xi + \beta^{\top} x + \gamma^{\top} d = \max_{k \in [K]} \alpha_k^{\top} \xi + \beta_k^{\top} x + \gamma_k^{\top} d,$$

s.t. $(\alpha, \beta, \gamma) \in \Lambda$

- M: set of units
- T: time horizon
- $\xi \in \mathbb{R}^T$: demand vector
- x_i: commitment variables.
- y_i: production variables.

$$Q(x,\xi) = \min_{y} C^{\top} y$$
s.t. $T_i x_i + W_i y_i = h_i, \quad \forall i$

$$\sum_{i \in \mathcal{M}} y_{i,t} = \xi_t, \quad \forall t$$

Distributionally Robust Optimization

$$\min_{x \in X} \quad c^{\top} x + \max_{\mathbb{Q} \in \mathcal{P}} \mathbb{E}_{\xi \sim \mathbb{Q}}[Q(x, \xi)]$$

Interes¹

Both Robust Optimization and Stochastic Optimization are special cases of DRO.

Stochastic Optimization:

$$\min_{\mathbf{x} \in X} c^{\top} \mathbf{x} + \mathbb{E}_{\xi \sim \mathbb{P}_0}[Q(\mathbf{x}, \xi)]$$

$$\mathcal{P} = \{\mathbb{P}_0\}$$

Robust Optimization

$$\min_{x \in X} c^{\top} x + \max_{\xi \in \mathcal{Z}} Q(x, \xi)$$

$$\mathcal{P} = \{ \mathbb{Q} \in \mathcal{B}(\mathcal{Z}) \}$$

 \implies How should we select \mathcal{P} ?

Distributionally Robust Optimization

$$\min_{x \in X} c^{\top} x + \max_{\mathbb{Q} \in \mathcal{P}} \mathbb{E}_{\xi \sim \mathbb{Q}}[Q(x, \xi)]$$

Interest

Both Robust Optimization and Stochastic Optimization are special cases of DRO.

Stochastic Optimization:

$$\min_{x \in X} c^{\top} x + \mathbb{E}_{\xi \sim \mathbb{P}_0}[Q(x, \xi)]$$

$$\mathcal{P} = \{\mathbb{P}_0\}$$

Robust Optimization:

$$\min_{x \in X} c^{\top} x + \max_{\xi \in \mathcal{Z}} Q(x, \xi)$$

$$\mathcal{P} = {\mathbb{Q} \in \mathcal{B}(\mathcal{Z})}$$

 \implies How should we select \mathcal{P} ?

Distributionally Robust Optimization

$$\min_{x \in X} c^{\top} x + \max_{\mathbb{Q} \in \mathcal{P}} \mathbb{E}_{\xi \sim \mathbb{Q}}[Q(x, \xi)]$$

Interest

Both Robust Optimization and Stochastic Optimization are special cases of DRO.

Stochastic Optimization:

$$\min_{x \in X} c^{\top} x + \mathbb{E}_{\xi \sim \mathbb{P}_0}[Q(x, \xi)]$$

$$\mathcal{P} = \{\mathbb{P}_0\}$$

Robust Optimization:

$$\min_{x \in X} c^{\top} x + \max_{\xi \in \mathcal{Z}} Q(x, \xi)$$

$$\mathcal{P} = \{\mathbb{Q} \in \mathcal{B}(\mathcal{Z})\}$$

 \implies How should we select \mathcal{P} ?

Wassertein-distance definition

$$(W_{p}(\mathbb{Q},\mathbb{P}))^{p} = \inf_{\pi \in \mathcal{P}(\mathcal{Z},\mathcal{Z})} \int_{\mathcal{Z} \times \mathcal{Z}} \|\xi - \zeta\|^{p} d\pi(\xi,\zeta)$$

$$s.t. \quad \int_{\{\xi\} \times \mathcal{Z}} d\pi(\xi,\zeta) = \mathbb{Q}(\xi) \qquad \forall \xi \in \mathcal{Z}$$

$$\int_{\mathcal{Z} \times \{\zeta\}} d\pi(\xi,\zeta) = \mathbb{P}(\zeta) \qquad \forall \zeta \in \mathcal{Z}$$

Mathis Azéma Two-stage DRO UC 29/07/25

 $\mathcal{P} = \{ \mathbb{Q} \in \mathcal{B}(\mathcal{Z}) \mid W_p(\mathbb{Q}, \mathbb{P}) \leq \theta \}$

Wasserstein distance-based ambiguity sets

$$\min_{x \in X} \quad c^{\top} x + \max_{\mathbb{Q} \in \mathcal{P}} \mathbb{E}_{\xi \sim \mathbb{Q}}[Q(x, \xi)] \qquad (\mathcal{D})$$

Idea: \mathcal{P} has to include distributions "close" to the empirical one.

$$\mathcal{P} = \{ \mathbb{Q} \in \mathcal{B}(\mathcal{Z}) \mid W_p(\mathbb{Q}, \mathbb{P}_0) \le \theta \}$$

- \bullet $\mathcal Z$: Support of the distributions.
- W_p : Wasserstein distance of order p defined with the cost function $c(\xi,\zeta) = \|\xi \zeta\|$.
- $\mathbb{P}_0 = \frac{1}{N} \sum_{i \in [N]} \delta_{\zeta_i}$: empirical distribution

Wasserstein distance-based ambiguity sets

$$\min_{x \in X} \quad c^{\top} x + \max_{\mathbb{Q} \in \mathcal{P}} \mathbb{E}_{\xi \sim \mathbb{Q}}[Q(x, \xi)] \qquad (\mathcal{D})$$

Idea: \mathcal{P} has to include distributions "close" to the empirical one.

$$\mathcal{P} = \{ \mathbb{Q} \in \mathcal{B}(\mathcal{Z}) \mid W_p(\mathbb{Q}, \mathbb{P}_0) \leq \theta \}$$

- ullet $\mathcal Z$: Support of the distributions.
- W_p : Wasserstein distance of order p defined with the cost function $c(\xi,\zeta) = \|\xi \zeta\|$.
- $\mathbb{P}_0 = \frac{1}{N} \sum_{i \in [N]} \delta_{\zeta_i}$: empirical distribution

Stochastic Optimization:

$$\min_{x \in X} c^{\top} x + \mathbb{E}_{\xi \sim \mathbb{P}_0}[Q(x, \xi)]$$
$$\theta = 0$$

Robust Optimization:

$$\min_{x \in X} c^{\top} x + \max_{\xi \in \mathcal{Z}} Q(x, \xi)$$

$$\theta = +\infty$$

Wasserstein distance-based ambiguity sets

$$\min_{x \in X} c^{\top} x + \max_{\mathbb{Q} \in \mathcal{P}} \mathbb{E}_{\xi \sim \mathbb{Q}}[Q(x, \xi)] \qquad (\mathcal{D})$$

Idea: \mathcal{P} has to include distributions "close" to the empirical one.

$$\mathcal{P} = \{ \mathbb{Q} \in \mathcal{B}(\mathcal{Z}) \mid W_p(\mathbb{Q}, \mathbb{P}_0) \le \theta \}$$

- ullet $\mathcal Z$: Support of the distributions.
- W_p : Wasserstein distance of order p defined with the cost function $c(\xi,\zeta) = \|\xi \zeta\|$.
- $\mathbb{P}_0 = \frac{1}{N} \sum_{i \in [N]} \delta_{\zeta_i}$: empirical distribution

Reformulation of problem (\mathcal{D}) (Gao and Kleywegt 2016)

$$\min_{x \in X, \lambda \geq 0} \quad c^\top x + \lambda \theta^p + \frac{1}{N} \sum_{i \in [N]} \max_{\xi \in \mathcal{Z}} \left(Q(x, \xi) - \lambda \|\xi - \zeta_i\|^p \right)$$

Benders' decomposition

$$\min_{x \in X, \lambda \geq 0} c^{\top} x + \lambda \theta^{p} + \frac{1}{N} \sum_{i \in [N]} \max_{\xi \in \mathcal{Z}} (Q(x, \xi) - \lambda \|\xi - \zeta_{i}\|^{p})$$

Benders' decomposition

$$\min_{x \in X, \lambda \ge 0, z} c^{\top} x + \lambda \theta^{p} + \frac{1}{N} \sum_{i \in [N]} z_{i}$$
s.t.
$$z_{i} \ge \max_{\xi \in \mathcal{Z}} \left(Q(x, \xi) - \lambda \|\xi - \zeta_{i}\|^{p} \right), \, \forall i$$

Benders' decomposition

$$\min_{x \in X, \lambda \ge 0, z} c^{\top} x + \lambda \theta^p + \frac{1}{N} \sum_{i \in [N]} z_i$$

s.t.
$$z_i \ge \max_{\xi \in \mathcal{Z}} (Q(x,\xi) - \lambda \|\xi - \zeta_i\|^p), \forall i$$

$$Q(x,\xi) = \max_{k \in [K]} \alpha_k^{\top} \xi + \beta_k^{\top} x + \gamma_k^{\top} d$$

Benders' decomposition

$$\min_{\mathbf{x} \in X, \lambda \geq 0, z} c^{\top} \mathbf{x} + \lambda \theta^{p} + \frac{1}{N} \sum_{i \in [N]} z_{i}$$
s.t.
$$z_{i} \geq \max_{\xi \in \mathcal{Z}, k \in [K]} \left(\alpha_{k}^{\top} \xi + \beta_{k}^{\top} \mathbf{x} + \gamma_{k}^{\top} d - \lambda \|\xi - \zeta_{i}\|^{p} \right), \, \forall i$$

$$Q(x,\xi) = \max_{k \in [K]} \alpha_k^\top \xi + \beta_k^\top x + \gamma_k^\top d$$

Benders' decomposition

$$\min_{x \in X, \lambda \ge 0, z} c^\top x + \lambda \theta^p + \frac{1}{N} \sum_{i \in [N]} z_i$$

s.t.
$$z_i \ge \max_{\xi \in \mathcal{Z}} \left(\alpha_k^\top \xi + \beta_k^\top x + \gamma_k^\top d - \lambda \|\xi - \zeta_i\|^p \right), \, \forall i, \, \forall k$$

Benders' decomposition

$$\min_{\mathbf{x} \in X, \lambda \ge 0, \mathbf{z}} c^{\top} \mathbf{x} + \lambda \theta^{p} + \frac{1}{N} \sum_{i \in [N]} z_{i}$$
s.t.
$$z_{i} \ge \beta_{k}^{\top} \mathbf{x} + \gamma_{k}^{\top} d + \max_{\xi \in \mathcal{Z}} \left(\alpha_{k}^{\top} \xi - \lambda \|\xi - \zeta_{i}\|^{p} \right), \, \forall i, \, \forall k$$

Benders' decomposition

$$\min_{x \in X, \lambda \ge 0, z} c^{\top} x + \lambda \theta^{p} + \frac{1}{N} \sum_{i \in [N]} z_{i}$$
s.t.
$$z_{i} \ge \beta_{k}^{\top} x + \gamma_{k}^{\top} d + \max_{\xi \in \mathcal{Z}} \left(\alpha_{k}^{\top} \xi - \lambda \|\xi - \zeta_{i}\|^{p} \right), \, \forall i, \, \forall k$$

Benders' decomposition

$$\min_{\mathbf{x} \in X, \lambda \ge 0, z} c^{\top} \mathbf{x} + \lambda \theta^{p} + \frac{1}{N} \sum_{i \in [N]} z_{i}$$
s.t.
$$z_{i} \ge \beta_{k}^{\top} \mathbf{x} + \gamma_{k}^{\top} d + \underbrace{\max_{\xi \in \mathcal{Z}} \left(\alpha_{k}^{\top} \xi - \lambda \|\xi - \zeta_{i}\|^{p} \right)}_{f_{i}(\alpha_{k}, \lambda)}, \forall i, \forall k$$

Proposition

The function f_i is convex.

Subproblem

$$\max_{\alpha,\beta,\gamma} \beta^{\top} x^* + \gamma^{\top} d + f_i(\alpha,\lambda^*)$$

subproblemNew constraint
$$\max_{\alpha,\beta,\gamma} \beta^\top x^* + \gamma^\top d + f_i(\alpha,\lambda^*)$$
$$z_i \geq \beta_k^\top x^* + \gamma_k^\top d$$

$$+ f_i(\alpha_k,\lambda^*) + \partial f_i(\alpha_k,\lambda^*)(\lambda - \lambda^*)$$

A DRO Unit Commitment problem

- A DRO Unit Commitment problem
 - Two-stage DRO problem
 - Examples of DRO problems
 - Comparison DRO/risk-neutral
- - Algorithm/DCA
 - Starting point
 - Ideas to obtain an Upper Bound

Examples: $\mathcal{P} = \{ \mathbb{Q} \in \mathcal{B}(\mathcal{Z}) \mid W_p(\mathbb{Q}, \mathbb{P}_0) \leq \theta \}$

$$\begin{aligned} \boldsymbol{\rho} &= \boldsymbol{1}, \|.\| = \|.\|_{1}, \boldsymbol{\mathcal{Z}} = \mathbb{R}^{T} \\ f_{i}(\alpha, \lambda) &= \max_{\xi \in \mathbb{R}^{T}} \alpha^{\top} \xi - \lambda \|\xi - \zeta_{i}\|_{1} \\ &= \alpha^{\top} \zeta_{i} + \mathbb{I}_{\|\alpha\|_{\infty} \leq \lambda} \end{aligned}$$

Master Problem

$$\min_{\mathbf{x} \in X, \lambda \geq 0, \mathbf{z}} c^{\top} \mathbf{x} + \lambda \theta^{p} + \frac{1}{N} \sum_{i \in [N]} z_{i}$$
s.t. $z_{i} \geq \beta_{k}^{\top} \mathbf{x} + \gamma_{k}^{\top} d + f_{i}(\alpha_{k}, \lambda), \forall i, \forall k$

Examples: $\mathcal{P} = \{ \mathbb{Q} \in \mathcal{B}(\mathcal{Z}) \mid W_p(\mathbb{Q}, \mathbb{P}_0) \leq \theta \}$

$$\begin{aligned} \boldsymbol{p} &= \boldsymbol{1}, \|.\| = \|.\|_{1}, \boldsymbol{\mathcal{Z}} = \mathbb{R}^{T} \\ f_{i}(\alpha, \lambda) &= \max_{\xi \in \mathbb{R}^{T}} \alpha^{\top} \xi - \lambda \|\xi - \zeta_{i}\|_{1} \\ &= \alpha^{\top} \zeta_{i} + \mathbb{I}_{\|\alpha\|_{\infty} \leq \lambda} \end{aligned}$$

Master Problem

$$\min_{x \in X, \lambda \ge 0, z} c^{\top} x + \lambda \theta^{p} + \frac{1}{N} \sum_{i \in [N]} z_{i}$$
s.t.
$$z_{i} \ge \beta_{k}^{\top} x + \gamma_{k}^{\top} d + \alpha_{k}^{\top} \zeta_{i} + \mathbb{I}_{\|\alpha_{k}\|_{\infty} \le \lambda}, \, \forall i, \, \forall k$$

Examples: $\mathcal{P} = \{ \mathbb{Q} \in \mathcal{B}(\mathcal{Z}) \mid W_p(\mathbb{Q}, \mathbb{P}_0) \leq \theta \}$

$$\begin{aligned} \boldsymbol{p} &= \boldsymbol{1}, \|.\| = \|.\|_{1}, \boldsymbol{\mathcal{Z}} = \mathbb{R}^{T} \\ f_{i}(\alpha, \lambda) &= \max_{\xi \in \mathbb{R}^{T}} \alpha^{\top} \xi - \lambda \|\xi - \zeta_{i}\|_{1} \\ &= \alpha^{\top} \zeta_{i} + \mathbb{I}_{\|\alpha\|_{\infty} \leq \lambda} \end{aligned}$$

Master Problem

$$\min_{\mathbf{x} \in X, \lambda \geq 0, \mathbf{z}} c^{\top} \mathbf{x} + \lambda \theta^{p} + \frac{1}{N} \sum_{i \in [N]} z_{i}$$
s.t.
$$z_{i} \geq \beta_{k}^{\top} \mathbf{x} + \gamma_{k}^{\top} d + \alpha_{k}^{\top} \zeta_{i}, \ \forall i, \ \forall k$$

$$\|\alpha_{k}\|_{\infty} \leq \lambda, \ \forall k$$

Examples: $\mathcal{P} = \{ \mathbb{Q} \in \mathcal{B}(\mathcal{Z}) \mid W_p(\mathbb{Q}, \mathbb{P}_0) \leq \theta \}$

$$\begin{aligned} \boldsymbol{p} &= \boldsymbol{1}, \|.\| = \|.\|_{1}, \boldsymbol{\mathcal{Z}} = \mathbb{R}^{T} \\ f_{i}(\alpha, \lambda) &= \max_{\xi \in \mathbb{R}^{T}} \alpha^{\top} \xi - \lambda \|\xi - \zeta_{i}\|_{1} \\ &= \alpha^{\top} \zeta_{i} + \mathbb{I}_{\|\alpha\|_{\infty} \leq \lambda} \end{aligned}$$

Master Problem

$$\min_{x \in X, z} c^\top x + \theta^p \max_{k \in K} (\|\alpha_k\|_\infty) + \frac{1}{N} \sum_{i \in [N]} z_i$$

s.t.
$$z_i \geq \beta_k^\top x + \gamma_k^\top d + \alpha_k^\top \zeta_i, \forall i, \forall k$$

Examples: $\mathcal{P} = \{ \mathbb{Q} \in \mathcal{B}(\mathcal{Z}) \mid W_p(\mathbb{Q}, \mathbb{P}_0) \leq \theta \}$

$$\begin{aligned} \boldsymbol{p} &= \boldsymbol{1}, \|.\| = \|.\|_{1}, \boldsymbol{\mathcal{Z}} = \mathbb{R}^{T} \\ f_{i}(\alpha, \lambda) &= \max_{\xi \in \mathbb{R}^{T}} \alpha^{\top} \xi - \lambda \|\xi - \zeta_{i}\|_{1} \\ &= \alpha^{\top} \zeta_{i} + \mathbb{I}_{\|\alpha\|_{\infty} \leq \lambda} \end{aligned}$$

Master Problem

$$\min_{\mathbf{x} \in X, \mathbf{z}} c^{\top} \mathbf{x} + \frac{1}{N} \sum_{i \in [N]} z_i$$
s.t. $z_i \ge \beta_{\mathbf{k}}^{\top} \mathbf{x} + \gamma_{\mathbf{k}}^{\top} d + \alpha_{\mathbf{k}}^{\top} \zeta_i, \ \forall i, \ \forall k$

Examples: $\mathcal{P} = \{ \mathbb{Q} \in \mathcal{B}(\mathcal{Z}) \mid W_p(\mathbb{Q}, \mathbb{P}_0) \leq \theta \}$

$$\begin{aligned} \boldsymbol{\rho} &= \boldsymbol{1}, \|.\| = \|.\|_{1}, \boldsymbol{\mathcal{Z}} = \mathbb{R}^{T} \\ f_{i}(\alpha, \lambda) &= \max_{\xi \in \mathbb{R}^{T}} \alpha^{\top} \xi - \lambda \|\xi - \zeta_{i}\|_{1} \\ &= \alpha^{\top} \zeta_{i} + \mathbb{I}_{\|\alpha\|_{\infty} \leq \lambda} \end{aligned}$$

Master Problem

$$\min_{x \in X, z} c^{\top} x + \frac{1}{N} \sum_{i \in [N]} z_i \rightarrow \text{No radius of DRO ball!}$$

s.t.
$$z_i \ge \beta_k^\top x + \gamma_k^\top d + \alpha_k^\top \zeta_i, \forall i, \forall k$$

Examples: $\mathcal{P} = \{ \mathbb{Q} \in \mathcal{B}(\mathcal{Z}) \mid W_p(\mathbb{Q}, \mathbb{P}_0) \leq \theta \}$

$$oldsymbol{
ho}=1,\|.\|=\|.\|_1,\mathcal{Z}=[ar{\xi},ar{\xi}]$$

$$f_i(\alpha, \lambda) = \max_{\xi} \alpha^{\top} \xi - \lambda \|\xi - \zeta_i\|_1$$

s.t. $\xi \in [\underline{\xi}, \overline{\xi}]$

Examples: $\mathcal{P} = \{ \mathbb{Q} \in \mathcal{B}(\mathcal{Z}) \mid W_p(\mathbb{Q}, \mathbb{P}_0) \leq \theta \}$

$$oldsymbol{p}=oldsymbol{1},\|.\|=\|.\|_1,\mathcal{Z}=[ar{ar{\xi}},ar{ar{\xi}}]$$

$$f_i(\alpha, \lambda) = \max_{\xi} \alpha^{\top} \xi - \lambda \mathbf{1}^{\top} u$$

s.t. $\xi \in [\underline{\xi}, \overline{\xi}], u \ge \xi - \zeta_i, u \ge \zeta_i - \xi$

Examples: $\mathcal{P} = \{ \mathbb{Q} \in \mathcal{B}(\mathcal{Z}) \mid W_p(\mathbb{Q}, \mathbb{P}_0) \leq \theta \}$

$$p = 1, \|.\| = \|.\|_1, \mathcal{Z} = [\underline{\xi}, \bar{\xi}]$$

$$f_i(\alpha, \lambda) = \max_{\xi} \alpha^{\top} \xi - \lambda \mathbf{1}^{\top} u$$

s.t. $\xi \in [\underline{\xi}, \overline{\xi}], \ u \ge \xi - \zeta_i, \ u \ge \zeta_i - \xi$

Subproblem

$$\max_{\alpha,\beta,\gamma} \beta^{\top} x^* + \gamma^{\top} d + f_i(\alpha, \lambda^*)$$

s.t. $(\alpha, \beta, \gamma) \in \Lambda$

Examples: $\mathcal{P} = \{ \mathbb{Q} \in \mathcal{B}(\mathcal{Z}) \mid W_p(\mathbb{Q}, \mathbb{P}_0) \leq \theta \}$

$$oldsymbol{
ho}=1,\|.\|=\|.\|_1,\mathcal{Z}=[ar{ar{\xi}},ar{ar{\xi}}]$$

$$f_i(\alpha, \lambda) = \max_{\xi} \alpha^{\top} \xi - \lambda \mathbf{1}^{\top} u$$

s.t. $\xi \in [\underline{\xi}, \overline{\xi}], \ u \ge \xi - \zeta_i, \ u \ge \zeta_i - \xi$

Subproblem

$$\begin{aligned} \max_{\alpha,\beta,\gamma,\xi,u} \beta^\top x^* + \gamma^\top d + \alpha^\top \xi - \lambda \mathbf{1}^\top u \\ \text{s.t.} & (\alpha,\beta,\gamma) \in \Lambda \\ & \xi \in [\underline{\xi},\overline{\xi}] \\ & u \geq \xi - \zeta_i \quad \to \text{Linearization to obtain a MILP!} \\ & u \geq \zeta_i - \xi \qquad \qquad \text{Gamboa et al. (2021)} \end{aligned}$$

Examples: $\mathcal{P} = \{ \mathbb{Q} \in \mathcal{B}(\mathcal{Z}) \mid W_p(\mathbb{Q}, \mathbb{P}_0) \leq \theta \}$

$$oldsymbol{p} = 2, \|.\| = \|.\|_2, \mathcal{Z} = \mathbb{R}^{oldsymbol{T}}$$

$$f_i(\alpha, \lambda) = \max_{\xi \in \mathbb{R}^T} \alpha^T \xi - \lambda \|\xi - \zeta_i\|_2^2$$

Examples: $\mathcal{P} = \{ \mathbb{Q} \in \mathcal{B}(\mathcal{Z}) \mid W_p(\mathbb{Q}, \mathbb{P}_0) \leq \theta \}$

$$oldsymbol{
ho}=2,\|.\|=\|.\|_2, \mathcal{Z}=\mathbb{R}^{oldsymbol{ au}}$$

$$f_i(\alpha, \lambda) = \alpha^{\top} \zeta_i + \frac{\|\alpha\|_2^2}{4\lambda}$$

Examples: $\mathcal{P} = \{ \mathbb{Q} \in \mathcal{B}(\mathcal{Z}) \mid W_p(\mathbb{Q}, \mathbb{P}_0) \leq \theta \}$

$$p = 2, ||.|| = ||.||_2, \mathcal{Z} = \mathbb{R}^T$$

$$f_i(\alpha, \lambda) = \alpha^{\top} \zeta_i + \frac{\|\alpha\|_2^2}{4\lambda}$$

Master Problem

$$\min_{x \in X, z, \lambda \ge 0} \quad c^\top x + \lambda \theta^2 + \frac{1}{N} \sum_{i \in [N]} z_i$$

s.t.
$$z_i \geq \beta_k^\top x + \gamma_k^\top d + f_i(\alpha, \lambda^*), \quad \forall i, \forall k$$

Subproblem

$$\max_{\alpha,\beta,\gamma} \beta^{\top} x^* + \gamma^{\top} d + f_i(\alpha, \lambda^*)$$

s.t. $(\alpha, \beta, \gamma) \in \Lambda$

Examples: $\mathcal{P} = \{\mathbb{Q} \in \mathcal{B}(\mathcal{Z}) \, | \, W_p(\mathbb{Q}, \mathbb{P}_0) \leq \theta \}$

$$p = 2, \|.\| = \|.\|_2, \mathcal{Z} = \mathbb{R}^T$$

$$f_i(\alpha, \lambda) = \alpha^{\top} \zeta_i + \frac{\|\alpha\|_2^2}{4\lambda}$$

Master Problem

$$\min_{x \in X, z, \lambda \ge 0} \quad c^\top x + \lambda \theta^2 + \frac{1}{N} \sum_{i \in [N]} z_i$$

s.t.
$$z_i \ge \beta_k^\top x + \gamma_k^\top d + \alpha_k^\top \zeta_i + \frac{\|\alpha_k\|_2^2}{4\lambda}, \quad \forall i, \forall k$$

Subproblem

$$\max_{\alpha,\beta,\gamma} \beta^{\top} x^* + \gamma^{\top} d + \alpha^{\top} \zeta_i + \frac{\|\alpha\|_2^2}{4\lambda^*}$$

s.t. $(\alpha, \beta, \gamma) \in \Lambda$

Examples: $\mathcal{P} = \{\mathbb{Q} \in \mathcal{B}(\mathcal{Z}) \, | \, W_p(\mathbb{Q}, \mathbb{P}_0) \leq \theta \}$

$$p=2,\|.\|=\|.\|_2,\mathcal{Z}=\mathbb{R}^T$$

$$f_i(\alpha, \lambda) = \alpha^{\top} \zeta_i + \frac{\|\alpha\|_2^2}{4\lambda}$$

Master Problem

$$\begin{aligned} \min_{x \in X, z, \lambda \geq 0} \quad c^\top x + \frac{\theta^2}{\lambda} + \frac{1}{N} \sum_{i \in [N]} z_i \\ \text{s.t.} \quad z_i \geq \beta_k^\top x + \gamma_k^\top d + \alpha_k^\top \zeta_i + \frac{\lambda \|\alpha_k\|_2^2}{4}, \quad \forall i, \, \forall k \end{aligned}$$

Subproblem

$$\max_{\alpha,\beta,\gamma} \beta^{\top} x^* + \gamma^{\top} d + \alpha^{\top} \zeta_i + \frac{\lambda^* \|\alpha\|_2^2}{4}$$

s.t. $(\alpha, \beta, \gamma) \in \Lambda$

Comparison Wasserstein distances

$$\min_{x \in X} c^{\top} x + \max_{\mathbb{Q} \in \mathcal{P}} \mathbb{E}_{\xi \sim \mathbb{Q}}[Q(x, \xi)]$$

Definition (Worst-case Distribution)

A worst-case distribution \mathbb{P}^* is a distribution in \mathcal{P} satisfying:

$$\max_{\mathbb{Q}\in\mathcal{P}}\mathbb{E}_{\xi\sim\mathbb{Q}}[Q(x,\xi)]=\mathbb{E}_{\xi\sim\mathbb{P}^*}[Q(x,\xi)]$$

- It is useful to analyze this to identify which constraints to add to $\ensuremath{\mathcal{P}}$ to improve the model.

Comparison Wasserstein distances

$$\begin{aligned} & \min_{x \in X} \quad c^\top x + \max_{\mathbb{Q} \in \mathcal{P}} \mathbb{E}_{\xi \sim \mathbb{Q}}[Q(x, \xi)] & Q(x, \xi) = \max_{k \in [K]} \alpha_k^\top \xi + \beta_k^\top x + \gamma_k^\top d \\ & \mathcal{P} = \{ \mathbb{Q} \in \mathcal{B}(\mathcal{Z}) \, | \, W_p(\mathbb{Q}, \mathbb{P}_0) \leq \theta \} & [\lambda] & \mathbb{P}_0 = \frac{1}{N} \sum_{i \in [N]} \delta_{\zeta_i} \end{aligned}$$

р	Norm	\mathcal{Z}	\mathbb{P}^*	$supp(\mathbb{P}^*)$
1	. 1	\mathbb{R}^{T}	Æ	-
1	$. _{1}$	$[\underline{\xi}, \bar{\xi}]$	3	$\xi_t \in \{\zeta_{i,t}, \underline{\xi}_t, \overline{\xi}_t\}$
2	$\ .\ _{2}$	\mathbb{R}^{T}	3	$\xi \in \bigcup_{k \in [K]} \{ \zeta_i + \frac{\lambda^* \alpha_k}{2} \}$

- It is the only one with a worst-case distribution whose support is unpredictable (depends on λ^*).

Contents

- A DRO Unit Commitment problem
 - Two-stage DRO problem
 - Examples of DRO problems
 - Comparison DRO/risk-neutral
- Adapted Benders algorithm
 - Algorithm/DCA
 - Starting point
 - Ideas to obtain an Upper Bound
- Computational experiments

Out of sample Costs

(a) Average costs out-of-sample

(b) Computational time (s)

Comparison risk-neutral/ DRO subproblems

Time spent in the subproblems

- If we have 100 iterations and 100 scenarios, we have to solve 10,000 subproblems.
- Idea: Use non-optimal dual solutions

Comparison risk-neutral/ DRO subproblems

Time spent in the subproblems

$$\max_{\substack{\alpha,\beta,\gamma\\s.t.}} \alpha^{\top} \zeta_i + \beta^{\top} x^* + \gamma$$

$$s.t. \quad (\alpha,\beta,\gamma) \in \Lambda$$

$$\downarrow \qquad \qquad \downarrow$$

$$LP$$

$$\approx 0.002s$$

Subproblem DRO for each scenario i: $\max_{\substack{\alpha,\beta,\gamma\\s.t.}} \alpha^{\top} \zeta_i + \beta^{\top} x^* + \gamma + f_i(\alpha, \lambda^*)$ $s.t. \quad (\alpha, \beta, \gamma) \in \Lambda$

Convex maximization problem (NP-Hard)

 $\approx 0.5s$

- If we have 100 iterations and 100 scenarios, we have to solve 10,000 subproblems.
- Idea: Use non-optimal dual solutions!

Contents

- 1 A DRO Unit Commitment problem
 - Two-stage DRO problem
 - Examples of DRO problems
 - Comparison DRO/risk-neutral
- 2 Adapted Benders algorithm
 - Algorithm/DCA
 - Starting point
 - Ideas to obtain an Upper Bound
- Computational experiments

Contents

- A DRO Unit Commitment problem
 - Two-stage DRO problem
 - Examples of DRO problems
 - Comparison DRO/risk-neutral
- 2 Adapted Benders algorithm
 - Algorithm/DCA
 - Starting point
 - Ideas to obtain an Upper Bound
- Computational experiments

Notations

Non convex subproblem: ("Hard" to solve)

$$\max_{\alpha,\beta,\gamma} \beta^{\top} x^{K} + \gamma^{\top} d + f_{i}(\alpha, \lambda^{K})$$

s.t. $(\alpha, \beta, \gamma) \in \Lambda$

Optimal solution: $(\alpha^*, \beta^*) \rightarrow \text{Optimal cut}$

Idea

- Every solution (α, β) of the subproblem gives a valid cut for the master problem.
- It is not necessary to solve the subproblem to optimality at each iteration.

Notations

Non convex subproblem: ("Hard" to solve)

$$\max_{\alpha,\beta} c^{\top} \beta + f(\alpha)$$

s.t. $(\alpha, \beta) \in \Lambda$

Optimal solution: $(\alpha^*, \beta^*) \rightarrow \text{Optimal cut}$

Idea

- Every solution (α, β) of the subproblem gives a valid cut for the master problem.
- It is not necessary to solve the subproblem to optimality at each iteration.

$$g(\alpha, \beta) = c^{\top}\beta + f(\alpha)$$

- **1** Choose a starting point α_0 .
- ② Compute $\partial f(\alpha_k)$.
- **③** Compute an optimal solution $s^{\ell}(\alpha_k) \in \arg\max_{(\alpha,\beta) \in \Lambda} c^{\top}\beta + \partial f(\alpha_k)^{\top}\alpha$.

 \implies The sequence $(g(\alpha_k, \beta_k))_{k \ge 1}$ is strictly increasing.

⇒ Algorithm **terminates** and converges toward a loca maximum

$$g(\alpha, \beta) = c^{\top}\beta + f(\alpha)$$

- **1** Choose a starting point α_0 .
- **2** Compute $\partial f(\alpha_k)$.
- **③** Compute an optimal solution $s^{\ell}(\alpha_k) \in \arg\max_{(\alpha,\beta) \in \Lambda} c^{\top}\beta + \partial f(\alpha_k)^{\top}\alpha$.

 \implies The sequence $(g(\alpha_k, \beta_k))_{k \ge 1}$ is strictly increasing.

⇒ Algorithm **terminates** and converges toward a loca maximum

$$g(\alpha, \beta) = c^{\top}\beta + f(\alpha)$$

- **1** Choose a starting point α_0 .
- ② Compute $\partial f(\alpha_k)$.
- **③** Compute an optimal solution $s^{\ell}(\alpha_k) \in \arg\max_{(\alpha,\beta) \in \Lambda} c^{\top}\beta + \partial f(\alpha_k)^{\top}\alpha$.

- \implies The sequence $(g(\alpha_k, \beta_k))_{k \ge 1}$ is strictly increasing.
- ⇒ Algorithm **terminates** and converges toward a loca maximum.

$$g(\alpha, \beta) = c^{\top}\beta + f(\alpha)$$

- **1** Choose a starting point α_0 .
- ② Compute $\partial f(\alpha_k)$.
- **③** Compute an optimal solution $s^{\ell}(\alpha_k) \in \arg\max_{(\alpha,\beta) \in \Lambda} c^{\top}\beta + \partial f(\alpha_k)^{\top}\alpha$.

 \implies The sequence $(g(\alpha_k, \beta_k))_{k \ge 1}$ is strictly increasing.

⇒ Algorithm **terminates** and converges toward a loca maximum

$$g(\alpha, \beta) = c^{\top}\beta + f(\alpha)$$

- **1** Choose a starting point α_0 .
- ② Compute $\partial f(\alpha_k)$.
- **③** Compute an optimal solution $s^{\ell}(\alpha_k) \in \arg\max_{(\alpha,\beta) \in \Lambda} c^{\top}\beta + \partial f(\alpha_k)^{\top}\alpha$.

- \implies The sequence $(g(\alpha_k, \beta_k))_{k>1}$ is strictly increasing.
- ⇒ Algorithm **terminates** and converges toward a local maximum

$$g(\alpha, \beta) = c^{\top} \beta + f(\alpha)$$

- **1** Choose a starting point α_0 .
- ② Compute $\partial f(\alpha_k)$.
- **③** Compute an optimal solution $s^{\ell}(\alpha_k) \in \arg\max_{(\alpha,\beta) \in \Lambda} c^{\top}\beta + \partial f(\alpha_k)^{\top}\alpha$.

- \implies The sequence $(g(\alpha_k, \beta_k))_{k \ge 1}$ is strictly increasing.
- ⇒ Algorithm **terminates** and converges toward a local maximum.

Contents

- A DRO Unit Commitment problem
 - Two-stage DRO problem
 - Examples of DRO problems
 - Comparison DRO/risk-neutral
- 2 Adapted Benders algorithm
 - Algorithm/DCA
 - Starting point
 - Ideas to obtain an Upper Bound
- Computational experiments

1st starting point strategy: the non-DRO solution

$$f(\alpha) = \max_{\xi \in \mathcal{Z}} \alpha^{\top} \xi - \lambda \|\xi - \zeta_i\|^p$$
$$\partial f(0) \in \arg\max_{\xi \in \mathcal{Z}} -\lambda \|\xi - \zeta_i\|^p = \{\zeta_i\}$$

Linearized problem with $\alpha_0 = 0$

$\max c^{\top} \beta + \partial f(\alpha_0)^{\top} \alpha$
s.t. $(\alpha, \beta) \in \Lambda$

Stochastic Optimization

$$\max c^{\top} \beta + \zeta_i^{\top} \alpha$$

s.t. $(\alpha, \beta) \in \Lambda$

- The DRO problem is, in general, "close" to the empirical one.
- Starting with $\alpha_0 = 0$ is in general a good choice.

2^{nd} starting point strategy: Sampling

Proposition

The set of starting points α_0 such that the DCA algorithm converges to a global maximum has a non-zero measure.

 Mathis Azéma
 Two-stage DRO UC
 29/07/25
 17 / 27

2nd starting point strategy: Sampling

Proposition

The set of starting points α_0 such that the DCA algorithm converges to a global maximum has a non-zero measure.

Randomly drawing the starting point ensures convergence almost surely.

3rd starting point strategy: Lower approximation

Proposition

The DCA algorithm approximates the non-convex part by its tangent at $\alpha_{\rm 0}$

$$\max_{\alpha,\beta} \, c^\top \beta + \partial f(\bar{\alpha})^\top \alpha$$

s.t.
$$(\alpha, \beta) \in \Lambda$$

3rd starting point strategy: Lower approximation

Proposition

The DCA algorithm approximates the non-convex part by its tangent at α_0

$$\max_{\alpha,\beta} c^{\top} \beta + f(\alpha) \qquad \max_{\alpha,\beta} c^{\top} \beta + \frac{\partial f(\bar{\alpha})^{\top} \alpha}{\partial \alpha}$$

s.t. $(\alpha, \beta) \in \Lambda$ s.t. $(\alpha, \beta) \in \Lambda$

Improve the starting point by approximating the non-convex part by a piecewise linear approximation.

The problem becomes a MILP!

Adapted Benders' Algorithm

Contents

- A DRO Unit Commitment problem
 - Two-stage DRO problem
 - Examples of DRO problems
 - Comparison DRO/risk-neutral
- 2 Adapted Benders algorithm
 - Algorithm/DCA
 - Starting point
 - Ideas to obtain an Upper Bound
- Computational experiments

KKT reformulation $(f(\alpha) = ||\alpha||_2^2)$

$$\max_{\alpha,\beta} c^{\top}\beta + f(\alpha)$$

s.t. $(\alpha, \beta) \in \Lambda$

- KKT conditions \implies MILP.
- → **Advantage:** Provide optimal solution.
- → Drawback: Large number of binary variables.
- ightarrow Worst than Gurobi solving directly the quadratic problem

KKT reformulation $(f(\alpha) = ||\alpha||_2^2)$

$$\max_{\alpha,\beta} c^{\top}\beta + f(\alpha)$$

s.t. $(\alpha,\beta) \in \Lambda$

- KKT conditions ⇒ MII P.
- → Advantage: Provide optimal solution.
- → Drawback: Large number of binary variables.
- -> Worst than Gurobi solving directly the quadratic problem

KKT reformulation $(f(lpha) = \|lpha\|_2^2)$

$$\max_{\alpha,\beta} c^{\top}\beta + f(\alpha)$$

s.t. $(\alpha, \beta) \in \Lambda$

- KKT conditions \implies MILP.
- → **Advantage:** Provide optimal solution.
- → **Drawback:** Large number of binary variables.
- → Worst than Gurobi solving directly the quadratic problem

$$\max_{\alpha,\beta} c^{\top} \beta + \|\alpha\|_2^2$$

s.t. $(\alpha, \beta) \in \Lambda$

$$\max_{\alpha,\beta} c^{\top} \beta + \|\alpha\|_2^2$$

s.t. $(\alpha, \beta) \in \Lambda$

PSD relaxation first order:

$$\max \quad c^{\top}\beta + Tr(X)$$
s.t. $(\alpha, \beta) \in \Lambda$

$$X = \begin{bmatrix} 1 & \alpha^{\top} \\ \alpha & \alpha\alpha^{\top} \end{bmatrix}$$

$$\max_{\alpha,\beta} c^{\top}\beta + \|\alpha\|_2^2$$

s.t. $(\alpha, \beta) \in \Lambda$

PSD relaxation first order:

$$\max \quad c^{\top}\beta + Tr(X)$$

s.t. $(\alpha, \beta) \in \Lambda$
 $X \succ 0$

$$\max_{\alpha,\beta} c^{\top}\beta + \|\alpha\|_2^2$$
 s.t. $(\alpha, \beta) \in \Lambda$

PSD relaxation first order:

$$\max \quad c^{\top}\beta + Tr(X)$$

s.t. $(\alpha, \beta) \in \Lambda$
 $X \succeq 0$

- → Advantage: Tractable convex problem.
- \rightarrow **Drawback:** Optimal value: $+\infty$
- → Worst than Gurobi solving directly the quadratic problem

$$\max_{\alpha,\beta} c^{\top}\beta + \|\alpha\|_2^2$$

s.t. $(\alpha, \beta) \in \Lambda$

PSD relaxation second order:

- **Idea:** Consider a large PSD matrix that include product variables between x and y up to order 2.
- → **Advantage:** Bounded convex problem and good relaxation.
- → **Drawback:** Untractable with solvers like Mosek.
- ightarrow Worse than Gurobi solving directly the quadratic problem

$$\max_{\alpha,\beta} c^{\top} \beta + f(\alpha)$$

s.t. $(\alpha, \beta) \in \Lambda$

$$\max_{\alpha,\beta} c^{\top} \beta + f(\alpha)$$

s.t. $(\alpha, \beta) \in \Lambda$

$$\max_{\alpha,\beta} c^{\top} \beta + f(\alpha)$$

s.t. $(\alpha, \beta) \in \Lambda$

$$\max_{\alpha,\beta} c^{\top} \beta + f(\alpha)$$

s.t. $(\alpha, \beta) \in \Lambda$

$$\max_{\alpha,\beta} c^{\top} \beta + f(\alpha)$$

s.t. $(\alpha, \beta) \in \Lambda$

$$\max_{\alpha,\beta} c^{\top} \beta + f(\alpha)$$

s.t. $(\alpha, \beta) \in \Lambda$

$$\max_{lpha,eta} c^ op eta + f(lpha)$$
 s.t. $(lpha,eta) \in \Lambda$

MILPs.

$$\max_{\alpha,\beta} c^{\top} \beta + f(\alpha)$$

s.t. $(\alpha, \beta) \in \Lambda$

- MILPs.
- Number of binary variables increases at each iteration

$$\max_{\alpha,\beta} c^{\top} \beta + f(\alpha)$$

s.t. $(\alpha, \beta) \in \Lambda$

- MILPs.
- Number of binary variables increases at each iteration
- Convergence in a few iterations.

 Mathis Azéma
 Two-stage DRO UC
 29/07/25
 23 / 27

Contents

- A DRO Unit Commitment problem
 - Two-stage DRO problem
 - Examples of DRO problems
 - Comparison DRO/risk-neutral
- Adapted Benders algorithm
 - Algorithm/DCA
 - Starting point
 - Ideas to obtain an Upper Bound
- 3 Computational experiments

Methodology

- \rightarrow Two test cases: one small, one large.
 - Small case: 24 hours, 3 units, 6 buses
 - Large case: 24 hours, 54 units, 118 buses
- → Before being able to solve the DRO problem, we first need to be able to solve the risk-neutral version using Benders' decomposition.
- → For the Unit Commitment, we use interval variables to model whether a unit is on or off over a time interval (paper in preparation).

Small test case

(a) Average costs out-of-sample

(b) Computational time (s)

Large test case

(a) Average costs out-of-sample

(b) Computational time (s)

Conclusion

What I presented:

- ightarrow A framework for distributionally robust unit commitment problems, highlighting why the 2-norm is more effective than the 1-norm.
- \rightarrow A novel method to solve the subproblems using DCA.
- \rightarrow Computational experiments showing that the DRO model outperforms the risk-neutral one.

Future work:

- ightarrow Conduct a large-scale comparison between DRO, RO, and SO models on a comprehensive benchmark.
- → Extend the framework to multi-stage decision problems.

Thank you for your attention!