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Origin of the quadratic problem Linearization Methods to obtain UB Computational experiments

Context

max
x∈Rn,y∈Rm

d⊤y + c⊤x + ∥x∥22

s.t. Ax + Ty = b,

x ≥ 0, y ≥ 0

→ Appears as the subproblem in a Benders’ decomposition
for a Distributionally Robust Optimization (DRO) problem.

→ Solving it to optimality provides the tightest possible upper
bound.

→ The problem is NP-hard.

→ Not necessary to solve it at optimality at each iteration!
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Contents
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Deterministic UC Problem

M: set of units

T : time horizon

ξ ∈ RT : demand vector

xi : commitment variables (binary).

yi : production variables (continuous).

min
xi ,yi

∑
i∈M

c⊤i xi +
∑
i∈M

b⊤i yi

s.t. xi ∈ Xi , ∀i ∈M
yi ∈ Yi (xi ) ∀i ∈M∑
i∈M

yi = ξ
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2-stage UC Problem under uncertainty

Uncertainty on the demand.

2-stage assumption:

1st stage: commitment variables (binary)
2nd stage: production variables (continuous)

min
xi ,yi

c⊤x + b⊤y

s.t. x ∈ X

yi ∈ Yi (xi ) ∀i ∈M∑
i∈M

yi = ξ ?
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2-stage UC Problem under uncertainty

Uncertainty on the demand.

2-stage assumption:

1st stage: commitment variables (binary)
2nd stage: production variables (continuous)

min
xi

c⊤x + Q(x , ξ)

s.t. x ∈ X

Q(x , ξ): recourse value representing the optimal cost of the second
stage, considering which units are on or off (first stage) and the
demand ξ

Q(x , ξ) = max
α,β,γ

α⊤ξ + β⊤x + γ = max
k∈K

α⊤
k ξ + β⊤

k x + γk

s.t. (α, β, γ) ∈ Λ
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Distributionnally Robust Optimization

min
x∈X

c⊤x +max
Q∈P

Eξ∼Q[Q(x , ξ)]

Interest

Both Robust Optimization and Stochastic Optimization are special
cases of DRO.

Stochastic Optimization:

min
x∈X

c⊤x + Eξ∼P0 [Q(x , ξ)]

P = {P0}

Robust Optimization:

min
x∈X

c⊤x +max
ξ∈U

Q(x , ξ)

P = {Q ∈ B(U)}

=⇒ How should we select P?
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Wasserstein distance-based ambiguity sets

min
x∈X

c⊤x +max
Q∈P

Eξ∼Q[Q(x , ξ)]

Idea: P has to include distributions “close” to the empirical one.

P = {Q ∈ B(RT ) |Wp(Q,P0) ≤ θ}
- P0 =

1
N

∑
i∈[N] δζi : empirical distribution

- Wp: Wasserstein distance of order p defined with the cost
function cp(ξ, ζ) = ∥ξ − ζ∥p.

p = 1:

- Reformulation with linear
programs

- Actually, it is the same
problem as with P = {P0}.

p = 2:

- Reformulation with non
convex quadratic programs.

- Leads to better solutions !

Mathis Azéma Convex quadratic maximization problem 30/06/25 6 / 25



Origin of the quadratic problem Linearization Methods to obtain UB Computational experiments

Wasserstein distance-based ambiguity sets

min
x∈X

c⊤x +max
Q∈P

Eξ∼Q[Q(x , ξ)]

Idea: P has to include distributions “close” to the empirical one.

P = {Q ∈ B(RT ) |Wp(Q,P0) ≤ θ}
- P0 =

1
N

∑
i∈[N] δζi : empirical distribution

- Wp: Wasserstein distance of order p defined with the cost
function cp(ξ, ζ) = ∥ξ − ζ∥p.

p = 1:

- Reformulation with linear
programs

- Actually, it is the same
problem as with P = {P0}.

p = 2:

- Reformulation with non
convex quadratic programs.

- Leads to better solutions !
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DRO Unit Commitment problem

Idea: P has to include distributions “close” to the empirical one.
Wasserstein distance-based ambiguity sets

P =
{
Q | supp(Q) ⊂ RT , W2(Q,P0) ≤ θ

}
, P0 =

1

N

∑
i∈[N]

δζi

min
x

c⊤x + max
Q:W2(Q,P0)≤θ [λ]

supp(Q)⊂RT

EQ[Q(x , ξ)]

s.t. x ∈ X
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P =
{
Q | supp(Q) ⊂ RT , W2(Q,P0) ≤ θ

}
, P0 =

1

N

∑
i∈[N]

δζi

min
x,λ≥0

c⊤x + λθ2 +
1

N

N∑
i=1

sup
ξ∈RT

(
Q(x , ξ)− λ∥ξ − ζi∥22
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N
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DRO Unit Commitment problem

Idea: P has to include distributions “close” to the empirical one.
Wasserstein distance-based ambiguity sets

P =
{
Q | supp(Q) ⊂ RT , W2(Q,P0) ≤ θ

}
, P0 =

1

N

∑
i∈[N]

δζi

min
x,λ≥0,z≥0,w≥0

c⊤x + wθ2 +
1

N

N∑
i=1

zi

s.t. x ∈ X

w ≤ 1

λ

zi ≥
(
α⊤
k ζi + β⊤

k x + γk +
λ∥αk∥22

4

)
∀k ∈ [K ]

Mathis Azéma Convex quadratic maximization problem 30/06/25 7 / 25



Origin of the quadratic problem Linearization Methods to obtain UB Computational experiments

DRO Unit Commitment problem

Idea: P has to include distributions “close” to the empirical one.
Wasserstein distance-based ambiguity sets

P =
{
Q | supp(Q) ⊂ RT , W2(Q,P0) ≤ θ

}
, P0 =

1

N
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min
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c⊤x + wθ2 +
1

N
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s.t. x ∈ X

w ≤ 1

λ

zi ≥
(
α⊤
k ζi + β⊤
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4

)
∀k ∈ [K ]

=⇒ Benders’ algorithm
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Benders algorithm DRO

Master Problem:
Subset of constraints

Subproblem for each scenario i :

max
α,β,γ

α⊤ζi + β⊤x∗ + γ +
λ∗∥α∥22

4
s.t. (α, β, γ) ∈ Λ

(α∗, β∗, γ∗)(x∗, λ∗)
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Comparison risk-neutral/ DRO subproblems

Time spent on instance with 50 units and 1 random demand
=⇒ dimension of the quadratic term: T = 24

Subproblem Risk-Neutral
for each scenario i :

max
α,β,γ

α⊤ζi + β⊤x∗ + γ

s.t. (α, β, γ) ∈ Λ

LP

≈ 0.002s

Subproblem DRO
for each scenario i :

max
α,β,γ

α⊤ζi + β⊤x∗ + γ+
λ∗∥α∥22

4
s.t. (α, β, γ) ∈ Λ

Convex maximization problem (NP-Hard)

≈ 0.5s

- If we have 100 iterations and 100 scenarios, we have to solve
10,000 subproblems.

- Idea: Use non-optimal dual solutions!
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Mathis Azéma Convex quadratic maximization problem 30/06/25 9 / 25



Origin of the quadratic problem Linearization Methods to obtain UB Computational experiments

Notations

Convex maximization problem: (”Hard” to solve)

max
x∈Rn,y∈Rm

d⊤y + c⊤x + ∥x∥22

(P) s.t. Ax + Ty = b,

x ≥ 0, y ≥ 0

Optimal value: v∗, Optimal solution: (x∗, y∗) ← Optimal cut

Linearization: (”Easy” to solve)

max
x∈Rn,y∈Rm

d⊤y + (c + 2x̄)⊤x − ∥x̄∥22

(Pℓ(x̄)) s.t. Ax + Ty = b,

x ≥ 0, y ≥ 0

Optimal value: v ℓ(x̄), Optimal solution: sℓ(x̄) ← Valid cut
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Frank-Wolfe Algorithm

f (x , y) = d⊤y + c⊤x + ∥x∥22

x0

Choice of the step length αk by solving:

max
α∈[0,1]

f ((xk , yk) + α(pxk , p
y
k ))

=⇒ By convexity, αk ∈ {0, 1} =⇒ (xk+1, yk+1) = sℓ(xk).
=⇒ The sequence (f (xk , yk))k≥1 is strictly increasing.
=⇒ Frank-Wolfe Algorithm terminates.
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Mathis Azéma Convex quadratic maximization problem 30/06/25 11 / 25



Origin of the quadratic problem Linearization Methods to obtain UB Computational experiments

Frank-Wolfe Algorithm

f (x , y) = d⊤y + c⊤x + ∥x∥22

x0

x1sℓ(x1) x2
x1

Choice of the step length αk by solving:

max
α∈[0,1]

f ((xk , yk) + α(pxk , p
y
k ))

=⇒ By convexity, αk ∈ {0, 1} =⇒ (xk+1, yk+1) = sℓ(xk).
=⇒ The sequence (f (xk , yk))k≥1 is strictly increasing.
=⇒ Frank-Wolfe Algorithm terminates.
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1st starting point strategy: the non-DRO solution

Linearized problem with x̄ = 0

max
x∈Rn,y∈Rm

d⊤y + (c + 2x̄)⊤x − ∥x̄∥22

s.t. Ax + Ty = b,

x ≥ 0, y ≥ 0

Stochastic Optimization

max
x∈Rn,y∈Rm

d⊤y + c⊤x

s.t. Ax + Ty = b,

x ≥ 0, y ≥ 0

- The DRO problem is in general “close” to the empirical one.

- Starting with x0 = 0 is in general a good choice.
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2nd starting point strategy: Sampling

Definition (Attraction field of a face F )

The attraction field of a face F at x̄ is the set of points P(F ) such
that the linearized problem at x̄ has F as the set of optimal
solutions.

(0, 0)

(1.4, 0.2)

(1.2, 0.8)

(0, 2)

(−1.1, 0.9)

(−0.6, 0.2)

Figure: Maximizing ∥x∥22
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Definition (Attraction field of a face F )

The attraction field of a face F at x̄ is the set of points P(F ) such
that the linearized problem at x̄ has F as the set of optimal
solutions.

Proposition

The set P(F ) is a polyhedron.
P(x∗) has a non-zero measure. A
point is a local optimum if and only
if it belongs to its attraction field.
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Definition (Attraction field of a face F )

The attraction field of a face F at x̄ is the set of points P(F ) such
that the linearized problem at x̄ has F as the set of optimal
solutions.

Proposition

The set P(F ) is a polyhedron.
P(x∗) has a non-zero measure. A
point is a local optimum if and only
if it belongs to its attraction field.

- FW algorithm finds a local
optimum.

- Randomly draw the starting point.
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3rd starting point strategy: Discretize the space

Proposition

Let x̄ and v(x , y) defined by :

v(x , y) = d⊤y + c⊤x + ∥x∥22
the following inequality holds:

v ℓ(x̄) ≤ v(sℓ(x̄)) ≤ v∗ ≤ v ℓ(x̄) + ∥x̄ − x∗∥2.

Corollary

Let ε > 0 and X ⊂ Rn such that:

max
x∈P

dist(x ,X ) ≤ ε dist(x ,X ) = min
x̄∈X
∥x − x̄∥2

Define v ℓ(X ) = maxx∈X v ℓ(x). Then, the following inequalities hold:

v ℓ(X ) ≤ v∗ ≤ ε2 + v ℓ(X )
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A MILP to solve the discretized problem

Corollary

Let ε > 0 and X ⊂ Rn such that:

max
x∈P

dist(x ,X ) ≤ ε dist(x ,X ) = min
x̄∈X

∥x − x̄∥2

Define v ℓ(X ) = maxx∈X v ℓ(x). Then, the following inequalities hold:

v ℓ(X ) ≤ v∗ ≤ ε2 + v ℓ(X )

u1

u1

u2

u2

u3

u3

u4

u4

u5 u6

v ℓ(X ) =max
x̄,x,y

d⊤y + (c+2x̄)⊤x − ∥x̄∥22

s.t. Ax + Ty = b,

x ≥ 0, y ≥ 0, x̄ ∈ X

=⇒ Linearization through binary variables
=⇒ MILP

Mathis Azéma Convex quadratic maximization problem 30/06/25 15 / 25



Origin of the quadratic problem Linearization Methods to obtain UB Computational experiments

A MILP to solve the discretized problem

Corollary

Let ε > 0 and X ⊂ Rn such that:

max
x∈P

dist(x ,X ) ≤ ε dist(x ,X ) = min
x̄∈X

∥x − x̄∥2

Define v ℓ(X ) = maxx∈X v ℓ(x). Then, the following inequalities hold:

v ℓ(X ) ≤ v∗ ≤ ε2 + v ℓ(X )

u1

u1

u2

u2

u3

u3

u4

u4

u5 u6

v ℓ(X ) =max
x̄,x,y

d⊤y + (c+2x̄)⊤x − ∥x̄∥22

s.t. Ax + Ty = b,

x ≥ 0, y ≥ 0, x̄ ∈ X

=⇒ Linearization through binary variables
=⇒ MILP
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Adapted Benders’ Algorithm

Master Problem:
Subset of constraints

Solve the subproblems for
each scenario at optimality

Master Problem:
Subset of constraints

Solve the subproblems for each
scenario with Frank-Wolfe
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Contents

1 Origin of the quadratic problem
Unit Commitment
Distributionnally Robust Optimization

2 Linearization
Frank-Wolfe Algorithm
Starting point of Frank-Wolfe Algorithm

3 Methods to obtain Upper Bounds
KKT reformulation
PSD relaxation
Piecewise linear upper approximation

4 Computational experiments
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KKT reformulation

max
x∈Rn,y∈Rm

d⊤y + c⊤x + ∥x∥22

s.t. Ax + Ty = b,

x ≥ 0, y ≥ 0

KKT conditions =⇒ MILP.

→ Advantage: Provide optimal solution.

→ Drawback: Large number of binary variables.

→ Worst than Gurobi solving directly the quadratic problem
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PSD relaxation

max
x∈Rn,y∈Rm

d⊤y + c⊤x + ∥x∥22

s.t. Ax + Ty = b,

x ≥ 0, y ≥ 0
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PSD relaxation

max
x∈Rn,y∈Rm

d⊤y + c⊤x + ∥x∥22

s.t. Ax + Ty = b,

x ≥ 0, y ≥ 0

PSD relaxation first order:

max
x∈Rn,y∈Rm

+

d⊤y + c⊤x + Tr(X )

s.t. Ax + Ty = b,

y ≥ 0, X =

[
1 x⊤

x xx⊤

]
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PSD relaxation

max
x∈Rn,y∈Rm

d⊤y + c⊤x + ∥x∥22

s.t. Ax + Ty = b,

x ≥ 0, y ≥ 0

PSD relaxation first order:

max
y∈Rm

+

d⊤y + c⊤X1,. + Tr(X )

s.t. AX1,. + Ty = b

X ⪰ 0

y ≥ 0
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PSD relaxation

max
x∈Rn,y∈Rm

d⊤y + c⊤x + ∥x∥22

s.t. Ax + Ty = b,

x ≥ 0, y ≥ 0

PSD relaxation first order:

max
y∈Rm

+

d⊤y + c⊤X1,. + Tr(X )

s.t. AX1,. + Ty = b

X ⪰ 0

y ≥ 0

→ Advantage: Tractable convex problem.

→ Drawback: Optimal value: +∞
→ Worst than Gurobi solving directly the quadratic problem
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PSD relaxation

max
x∈Rn,y∈Rm

+

d⊤y + c⊤x + ∥x∥22

s.t. Ax + Ty = b,

x ≥ 0, y ≥ 0

PSD relaxation second order:

Idea: Consider a large PSD matrix that include product
variables between x and y up to order 2.

→ Advantage: Bounded convex problem and good relaxation.

→ Drawback: Untractable with solvers like Mosek.

→ Worst than Gurobi solving directly the quadratic problem
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Piecewise linear upper approximation

x2Upper 1

x
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Piecewise linear upper approximation

x2Upper 1

x∗1

x
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Piecewise linear upper approximation

x2

x∗1

Upper 2

x
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Piecewise linear upper approximation

x2

x∗1

Upper 2

x∗2

x
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Piecewise linear upper approximation

x2

x∗1x∗2

Upper 3

x
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Piecewise linear upper approximation

x2

x∗1

Upper 3

x∗3

x
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Piecewise linear upper approximation

x2

x∗1

Upper 3

x∗3

x

MILPs.
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Piecewise linear upper approximation

x2

x∗1

Upper 3

x∗3

x

MILPs.

Number of binary variables
increases at each iteration
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Piecewise linear upper approximation

x2

x∗1

Upper 3

x∗3

x

MILPs.

Number of binary variables
increases at each iteration

Convergence in a few
iterations.
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Contents

1 Origin of the quadratic problem
Unit Commitment
Distributionnally Robust Optimization

2 Linearization
Frank-Wolfe Algorithm
Starting point of Frank-Wolfe Algorithm

3 Methods to obtain Upper Bounds
KKT reformulation
PSD relaxation
Piecewise linear upper approximation

4 Computational experiments
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Instances

Source: SMS++/ EDF. Instances with generators (10, 50,
100) and only one random demand (dimension: T = 24)

Source IEEE: instance with network constraints:

54 generators and 10 wind farms =⇒ dimension of
uncertainty: 10× T = 240
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Computational times

Units 10 50 100 54
ξ dimension 24 24 24 240

FW (x0 = 0) 0.002s 0.002s 0.002s 0.04s
FW MILP (x0 ∈ {0,M}T ) 0.01s 0.05s 0.1s 0.2s
MILP UB 0.1s 0.3s 0.5s 4s
Gurobi 0.2s 0.5s 0.75s 5s

Table: Time comparison (s)
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Computational times

Units 10 50 100 54
ξ dimension 24 24 24 240

FW (x0 = 0) 0.002s 0.002s 0.002s 0.04s
FW MILP (x0 ∈ {0,M}T ) 0.01s 0.05s 0.1s 0.2s
MILP UB 0.1s 0.3s 0.5s 4s
Gurobi 0.2s 0.5s 0.75s 5s

Table: Time comparison (s)

Number of binary variables: O(dimension of ξ × Number of pieces)
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Convergence Analysis

Master Problem:
Subset of constraints

Solve the subproblems for
each scenario at optimality

Master Problem:
Subset of constraints

Solve the subproblems for each
scenario with Frank-Wolfe
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Convergence Analysis

Units 10 50 100 54
ξ dimension 24 24 24 240

FW (x0 = 0) 3s 15s 40s 60s
FW MILP (x0 ∈ {0,M}T ) 30s 167s 400s 1400s
Gurobi 35s 300s 410s -

Table: Computational time with 25 scenarios (0.1% gap)

Units 10 50 100 54
ξ dimension 24 24 24 240

FW (x0 = 0) 0.3% 0.2% 0.3% 0.15%
FW MILP (x0 ∈ {0,M}T ) < 0.1% < 0.1% < 0.1% 0.2%
Gurobi < 0.1% < 0.1% < 0.1% -

Table: Real gap after “convergence” (25 scenarios)
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Conclusion

Summary

- Analysis of an NP-hard problem that arises as the oracle
problem in a Benders’ decomposition for solving a DRO
problem.

- Show how the Frank-Wolfe algorithm can be used to progress
in the Benders’ algorithm.

- Exploration of methods for calculating upper bounds.

- Evaluate the performance of the Adapted Benders’
decomposition.
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