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dT T 2
B Gy e [1x][3
st. Ax+ Ty = b,

x>0,y>0

— Appears as the subproblem in a Benders’ decomposition
for a Distributionally Robust Optimization (DRO) problem.
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dT T 2
B Gy e [1x][3

st. Ax+ Ty = b,
x>0,y >0

— Appears as the subproblem in a Benders’ decomposition
for a Distributionally Robust Optimization (DRO) problem.

— Solving it to optimality provides the tightest possible upper
bound.

— The problem is NP-hard.

— Not necessary to solve it at optimality at each iteration!
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Origin of the quadratic problem
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Origin of the quadratic problem
[ Je]

Deterministic UC Problem

M: set of units

T: time horizon

£ €RT: demand vector

xj: commitment variables (binary).

y;i: production variables (continuous).

min Z ¢ xi + Z b y;

M em ieMm

s.t. x; € X;, Vie M
yi € Yi(xi) Vie M
> yi=¢
ieM
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Origin of the quadratic problem
oe

2-stage UC Problem under uncertainty

Uncertainty on the demand.

min c'x+b'y

XisYi
s.t. xeX
yi € Y,'(X,') Vie M

> vi=[¢]?

ieM
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Origin of the quadratic problem
oe

2-stage UC Problem under uncertainty

Uncertainty on the demand.
2-stage assumption:

1% stage: commitment variables (binary)
279 stage: production variables (continuous)

min c'x+b'y
XiYi

s.t. xeX
yi € Yi(xi) Vie M

Z%‘Z&

ieM
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Origin of the quadratic problem
oe

2-stage UC Problem under uncertainty

Uncertainty on the demand.
2-stage assumption:

1% stage: commitment variables (binary)
279 stage: production variables (continuous)

min ¢c'x4+ min b'y
Xi Yiryi€Yi(xi)
ZieM yi=¢

s.t. xe X
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Origin of the quadratic problem
oe

2-stage UC Problem under uncertainty

Uncertainty on the demand.

2-stage assumption:
1% stage: commitment variables (binary)
274 stage: production variables (continuous)
: T
min ¢ x+ Q(x.,¢)
X;
sit. xe X

Q(x,&): recourse value representing the optimal cost of the second
stage, considering which units are on or off (first stage) and the

demand &

Q(x, &) = maxa'€+ B x +7 = maxay &+ B x + v
a,B,y kel

s.t. (o, B,7) €N
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Origin of the quadratic problem

Distributionnally Robust Optimization

. T
Ee ,
min ¢ x4 maxeg[Q(x, )]
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Origin of the quadratic problem

Distributionnally Robust Optimization

. T
Ee ,
min ¢ x4 maxeg[Q(x, )]

Both Robust Optimization and Stochastic Optimization are special
cases of DRO.

Stochastic Optimization: Robust Optimization:
: T . T
min ¢ x 4+ Eeupy [Q(x, 6)] min ¢ x+r£neab>{< Q(x,¢)
P = {Po} P ={Q e B(U)}
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Origin of the quadratic problem

Distributionnally Robust Optimization

. T
Ee ,
min ¢ x4 maxeg[Q(x, )]

Both Robust Optimization and Stochastic Optimization are special
cases of DRO.

Stochastic Optimization: Robust Optimization:
: T . T
min ¢ x 4+ Eeupy [Q(x, 6)] min ¢ x+r£neab>{< Q(x,¢)
P = {Po} P ={Q e B(U)}

—> How should we select P?
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Origin of the quadratic problem

Wasserstein distance-based ambiguity sets

. T
Ee ,
min ¢ x4+ maxBeg[Q(x, )]

Idea: P has to include distributions “close” to the empirical one.
P ={QeB[R")| W,(Q,Fo) < 6}
-Po=% >_ie[n) O¢;: empirical distribution

- W,: Wasserstein distance of order p defined with the cost

function c,(&,¢) = [I€ — Cllp-
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Origin of the quadratic problem

Wasserstein distance-based ambiguity sets

. T
Ee ,
min ¢ x4+ maxBeg[Q(x, )]

Idea: P has to include distributions “close” to the empirical one.
P ={QeB[R")| W,(Q,Fo) < 6}

- Py = % ZiE[N] d¢;: empirical distribution
- W,: Wasserstein distance of order p defined with the cost

function c,(&,¢) = [I€ — Cllp-

p=1 p=2:
- Reformulation with linear - Reformulation with non
programs convex quadratic programs.
- Actually, it is the same - Leads to better solutions !
problem as with P = {Po}.
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Origin of the quadratic problem

DRO Unit Commitment problem

Idea: P has to include distributions “close” to the empirical one.
Wasserstein distance-based ambiguity sets

P = {Q|supp(Q) CRT, Wa(Q.Bo) <0}, Bo=1 35

i€[N]
. T
min ¢ x+ max Eg[Q(x,
X Q: Wa(Q,Po)<6  [A] Q[ ( g)]
supp(Q)CR”
s.t. xeX
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Origin of the quadratic problem

DRO Unit Commitment problem

Idea: P has to include distributions “close” to the empirical one.
Wasserstein distance-based ambiguity sets

P = {Q|supp(Q) CRT, Wa(Q.Bo) <0}, Bo=1 35

i€[N]
N
. T 24 2
min, c'x+ N N ngeuﬂs (Q(x, ) = All€ = ¢i[[3)
s.t. xeX
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Origin of the quadratic problem

DRO Unit Commitment problem

Idea: P has to include distributions “close” to the empirical one.
Wasserstein distance-based ambiguity sets

P = {Q|supp(Q) CRT, Wa(Q.Bo) <0}, Bo=1 35

i€[N]
min ¢ x+ \? + Z (af &+ B¢ x + =€ = ¢Gi[1?)
x,A>0 N EGRT kE[K]

s.t. xeX
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Origin of the quadratic problem

DRO Unit Commitment problem

Idea: P has to include distributions “close” to the empirical one.
Wasserstein distance-based ambiguity sets

P = {Q|supp(Q) CRT, Wa(Q.Bo) <0}, Bo=1 35

i€[N]

N
1
. T 2 T Te —_ 112
XIT)]\IZHO c'x+ M\ —l——N ,-E,l kné?%] (ﬁkx+fyk+£rre1%>§(ak§ Mg =Gl ))

)

s.t. xeX
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Origin of the quadratic problem

DRO Unit Commitment problem

Idea: P has to include distributions “close” to the empirical one.
Wasserstein distance-based ambiguity sets

P = {Q|supp(Q) CRT, Wa(Q.Bo) <0}, Bo=1 35

i€[N]

N
| 1 e
mi c ' x+ N2+ N ; p’ne[a&(] (b’ka + vk + akTC,- + 2

X,A>0 4\

s.t. xeX
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Origin of the quadratic problem

DRO Unit Commitment problem

Idea: P has to include distributions “close” to the empirical one.
Wasserstein distance-based ambiguity sets

P = {Q|supp(Q) CRT, Wa(Q.Bo) <0}, Bo=1 35

i€[N]
1 N

: T 2, )

x,,\zor,];g]o,wzo ¢ x+wh + N Zz’
s.t. xeX
< 1
W J—
A

A 2
Zj > <Olk C, + ﬂk + + (Z(|2> Vk S [K]
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Origin of the quadratic problem

DRO Unit Commitment problem

Idea: P has to include distributions “close” to the empirical one.
Wasserstein distance-based ambiguity sets

P = {Q|supp(Q) CRT, Wa(Q.Bo) <0}, Bo=1 35

i€[N]
1 N

: T 2, )

x,,\zor,];g]o,wzo ¢ x+wh + N Zz’
s.t. xeX
< 1
W J—
A

A 2
s (a7 e+ L208) e

—> Benders’ algorithm
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Origin of the quadratic problem

Benders algorithm DRO

Master Problem:
Subset of constraints

(X*7)\*) (a*7/3*7’y*)
Subproblem for each scenario i:

M|
max TC,+6T *+ 4+ || ||2
o,B,y 4

s.t. (a,8,7) €N
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Origin of the quadratic problem

Benders algorithm DRO

(x*, A%)

Master Problem:
Subset of constraints

Subproblem for each scenario i:

|
max TCI+6T *+ 4+ || ||2
a,B,y 4
s.t. (a,8,7) €N

Mathis Azéma Convex quadratic maximization problem

\

Convex maximization
problem (NP-Hard)

30/06/25

(a*7ﬁ*,7*)
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Origin of the quadratic problem

Comparison risk-neutral/ DRO subproblems

Time spent on instance with 50 units and 1 random demand
—> dimension of the quadratic term: T = 24

Subproblem DRO
for each scenario i:

T T, * T T, A3
max oo (+ B x4+ max o (+B8 x +y+——=
.8,y B,y 4

s.t. (a,8,7) €N s.t. (a,B8,7) €N

|

’Convex maximization problem (NP—Hard)‘

Subproblem Risk-Neutral
for each scenario i:
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Origin of the quadratic problem

Comparison risk-neutral/ DRO subproblems

Time spent on instance with 50 units and 1 random demand
—> dimension of the quadratic term: T = 24

Subproblem DRO
for each scenario i:

T T, * T T, A3
max oo (+ B x4+ max o (+B8 x +y+——=
.8,y B,y 4

s.t. (a,8,7) €N s.t. (a,B8,7) €N

|

’Convex maximization problem (NP—Hard)‘

- If we have 100 iterations and 100 scenarios, we have to solve
10,000 subproblems.

- ldea: Use non-optimal dual solutions!
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for each scenario i:




Linearization
[ ]
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Linearization

Notations

Convex maximization problem: (”Hard” to solve)

d7 T 2
emaxe, diytoxt|xl
(P) st Ax + Ty = b,
x>0,y>0
Optimal value: v*, Optimal solution: (x*,y*)| < Optimal cut
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Linearization

Notations

Convex maximization problem: (”Hard” to solve)

d7 T 2
emaxe, diytoxt|xl
(P) st Ax + Ty = b,
x>0,y>0
Optimal value: v*, Optimal solution: (x*,y*)| < Optimal cut

Linearization: (”Easy” to solve)

max d'y + (c+2%)"x — ||x|]3
xeRM yeRM
(Pe(X)) st Ax + Ty = b,
x>0,y>0
Optimal value: v*(X), Optimal solution: s°(x)| « Valid cut
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Linearization

Frank-Wolfe Algorithm

f(x,y)=d'y+c'x+|x|3
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Linearization

Frank-Wolfe Algorithm

f(x,y) =d 'y +c'x+|x|3

s‘(x)
Choice of the step length ay by solving:

afg[ax F (ks k) + Pk Py))
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Linearization

Frank-Wolfe Algorithm

f(x,y) =d 'y +c'x+|x|3

s‘(x)
Choice of the step length ay by solving:

afg[ax F (ks k) + Pk Py))

= By convexity, a) € {0,1} = (X1, ¥k11) = 5" (x).
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Linearization

Frank-Wolfe Algorithm

f(x,y)=d'y+c'x+|x|3

X2:S€(X1)

X1:5£(X0)
Choice of the step length o by solving:

f < p
max (Cas yie) + a(PK; py))

— By convexity, ax € {0,1} = (Xk11,Yks1) = s°(xk).
= The sequence (f(xk, yk))k>1 is strictly increasing.
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Linearization

Frank-Wolfe Algorithm

f(x,y)=d'y+c'x+|x|3

X2:S£(X1)

X1:5£(X0)
Choice of the step length o by solving:

m[aOX F (s k) + a(pK py))

— By convexity, ax € {0,1} = (Xk11,Yks1) = s°(xk).
= The sequence (f(xk, yk))k>1 is strictly increasing.
—> Frank-Wolfe Algorithm terminates.



Linearization
[ Jelele]e]

1° starting point strategy: the non-DRO solution

Linearized problem with X =0

max_ d'y+ (c+2%)"x—||x|3
xeRM yeRM

st. Ax+ Ty =b,
x>0,y>0

Stochastic Optimization

max d'y+c'x
xeRM yeRm

st. Ax+ Ty =b,
x>0,y>0

- The DRO problem is in general “close” to the empirical one.

- Starting with xg = 0 is in general a good choice.
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Linearization
o] Jelele]

2" starting point strategy: Sampling

Definition (Attraction field of a face F)

The attraction field of a face F at X is the set of points P(F) such
that the linearized problem at X has F as the set of optimal
solutions.

(0.2)

(~1.1,0.9)

(0,0)

Figure: Maximizing ||x||3
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Linearization
o] Jelele]

2" starting point strategy: Sampling

Definition (Attraction field of a face F)

The attraction field of a face F at X is the set of points P(F) such
that the linearized problem at X has F as the set of optimal
solutions.

(0.2)

Proposition
The set P(F) is a polyhedron.
P(x*) has a non-zero measure. A (11.09)

point is a local optimum if and only
if it belongs to its attraction field.

(0,0)

Figure: Maximizing ||x||3
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Linearization
o] Jelele]

2" starting point strategy: Sampling

Definition (Attraction field of a face F)

The attraction field of a face F at X is the set of points P(F) such
that the linearized problem at X has F as the set of optimal
solutions.

(0.2)

Proposition

The set P(F) is a polyhedron.
P(x*) has a non-zero measure. A
point is a local optimum if and only
if it belongs to its attraction field.

- FW algorithm finds a local
optimum.

(0,0)

e »
- Randomly draw the starting point. Figure: Maximizing ||x|3
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Linearization

00e00

3 starting point strategy: Discretize the space

Let X and v(x, y) defined by :
v(x,y) =dy +c'x+|xII3
the following inequality holds:
vi(R) < v(s'(X)) < v < vE(R) + I|R - x| )
o
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Linearization

00e00

3 starting point strategy: Discretize the space

Let X and v(x, y) defined by :
v(x,y) =dy +c'x+|xII3

the following inequality holds:

VA(R) < (s (®)) < v < VR) IR - X1

.

Let e > 0 and X C R” such that:

max dist(x, X) < & dist(x, X) = min ||x — X||2
xeP xeX

Define v/(X) = max,ex v¥(x). Then, the following inequalities hold:

ve(X) <vi<el+ ve(X)

v
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Linearization
00080

A MILP to solve the discretized problem

Let e > 0 and X C R" such that:
max dist(x, X) < dist(x, X) = min||x — X2
xeP xeX

Define v¥(X) = maxyex v(x). Then, the following inequalities hold:
ViX) < vt <+ viX)

ViX)=max  d'y+ (c+2x)"x — ||x]3

X, X,y
s.t. Ax+ Ty = b,
x>0,y>0,xeX
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Linearization
00080

A MILP to solve the discretized problem

Let € > 0 and X C R” such that:
max dist(x, X) < dist(x, X) = min||x — X2
xeP xeX

Define v¥(X) = maxyex v(x). Then, the following inequalities hold:
ViX) < vt <+ viX)

ViX)=max  d'y+ (c+2x)"x — ||x]3

X, X,y
s.t. Ax+ Ty = b,
x>0,y>0,xeX

— Linearization through binary variables
= MILP
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Linearization
Q000e

Adapted Benders’ Algorithm

Master Problem:
Subset of constraints

Solve the subproblems for
each scenario at optimality

V

Master Problem:
Subset of constraints

Solve the subproblems for each
scenario with Frank-Wolfe
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Methods to obtain UB
[ ]
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Methods to obtain UB
L]

KKT reformulation

dT T 2
emax, diytoixd X112
st. Ax+ Ty = b,

x>0,y>0
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Methods to obtain UB
L]

KKT reformulation

dT T 2

emax, diytoixd X112
st. Ax+ Ty = b,
x>0,y>0

KKT conditions = MILP.
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Methods to obtain UB
L]

KKT reformulation

dT T 2

emax, diytoixd X112
st. Ax+ Ty = b,
x>0,y>0

KKT conditions = MILP.
— Advantage: Provide optimal solution.
— Drawback: Large number of binary variables.
— Worst than Gurobi solving directly the quadratic problem
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Methods to obtain UB
[ le]

PSD relaxation

dT T 2

emax, diytoixd X112
st. Ax+ Ty = b,
x>0,y=>0
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Methods to obtain UB
[ le]

PSD relaxation

dT T 2

emax, diytoixd X112
st. Ax+ Ty = b,
x>0,y=>0

PSD relaxation first order:

max d'y +c'x+ Tr(X)
x€R",y€RT

s.t. Ax+ Ty = b,

1 xT
yZO7X_|:X T:|

XX
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Methods to obtain UB
[ le]

PSD relaxation

dT T 2

emax, diytoixd X112
st. Ax+ Ty = b,
x>0,y=>0

PSD relaxation first order:

max d'y+c' Xy + Tr(X)

yE]R$
st. AXy. +Ty=0>b
X>=0
y=>0
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Methods to obtain UB
[ le]

PSD relaxation

dT T 2

e y+c x+|x[3
st. Ax+ Ty = b,
x>0,y>0

PSD relaxation first order:

max d'y+c' Xy + Tr(X)

ye]R$
st. AXy. +Ty=0>
X >0
y=>0

— Advantage: Tractable convex problem.
— Drawback: Optimal value: +o00
— Worst than Gurobi solving directly the quadratic problem
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Methods to obtain UB
o] ]

PSD relaxation

max d’ + ch—i— x|[3

. S [1x][3
st. Ax+ Ty =b,
x>20,y>0

PSD relaxation second order:

Idea: Consider a large PSD matrix that include product
variables between x and y up to order 2.

— Advantage: Bounded convex problem and good relaxation.

— Drawback: Untractable with solvers like Mosek.
— Worst than Gurobi solving directly the quadratic problem
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Methods to obtain UB
[ ]

Piecewise linear upper approximation
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Methods to obtain UB
[ ]

Piecewise linear upper approximation
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Methods to obtain UB
[ ]

Piecewise linear upper approximation
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[ ]

Piecewise linear upper approximation
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Methods to obtain UB
[ ]

Piecewise linear upper approximation

.
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Methods to obtain UB
[ ]

Piecewise linear upper approximation

.
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Methods to obtain UB
[ ]

Piecewise linear upper approximation

Upper 3 x2 MILPs.

.
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Methods to obtain UB
[ ]

Piecewise linear upper approximation

Upper 3 x2 MILPs.
y Number of binary variables
increases at each iteration
Y ’
\\\ ,, :
N 1
! X
1 1
x5 X
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Methods to obtain UB
[ ]

Piecewise linear upper approximation

Upper 3 x? MILPs.
y Number of binary variables
increases at each iteration
p Convergence in a few
iterations.
\I E X
x5 X
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Computational experiments

®00000

@ Computational experiments
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Computational experiments
(o] lelele]e]

Instances

Source: SMS++/ EDF. Instances with generators (10, 50,
100) and only one random demand (dimension: T = 24)
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Computational experiments
(o] lelele]e]

Instances

Source: SMS++/ EDF. Instances with generators (10, 50,
100) and only one random demand (dimension: T = 24)

Source |IEEE: instance with network constraints:

54 generators and 10 wind farms = dimension of
uncertainty: 10 x T = 240
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Computational experiments
[o]e] lele]e]

Computational times

Units 10 50 100 54
& dimension 24 24 24 240
FW MILP (xo € {0, M}l ) | 0.01s 0.05s 0.1s 0.2s
MILP UB 0.1s 0.3s 0.5s 4s
Gurobi 0.2s 0.5s 0.75s  5s

Table: Time comparison (s)
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Computational experiments
[o]e] lele]e]

Computational times

Units 10 50 100 54

& dimension 24 24 24 240
FW (x0 = 0) 0.002s 0.002s 0.002s 0.04s
FW MILP (xo € {0,M}7) | 0.01s 0055 0.1s  0.2s
MILP UB 0.1s 0.3s 0.5s 4s
Gurobi 0.2s 0.5s 0.75s  5s

Table: Time comparison (s)

Number of binary variables: O(dimension of £ x Number of pieces)
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Computational experiments
[o]e] lele]e]

Computational times

Units 10 50 100 54
& dimension 24 24 24 240
FW MILP (xo € {0, /\/I}l ) | 0.01s 0.05s 0.1s 0.2s
MILP UB 0.1s 0.3s 0.5s 4s
Gurobi 0.2s 0.5s 0.75s  5s

Table: Time comparison (s)
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Computational experiments
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Convergence Analysis

Master Problem:
Subset of constraints

Solve the subproblems for
each scenario at optimality

V

Master Problem:
Subset of constraints

Solve the subproblems for each
scenario with Frank-Wolfe
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Computational experiments
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Convergence Analysis

Units 10 50 100 54
¢ dimension 24 24 24 240
FW (xo =0) 3s 15s 40s 60s
FW MILP (xo € {0,M}T) | 30s 167s 400s 1400s
Gurobi 35s 300s 410s -

Table: Computational time with 25 scenarios (0.1% gap)

Units 10 50 100 54

¢ dimension 24 24 24 240
FW (xg = 0) 03% 02% 03%  0.15%
FW MILP (xo € {O,M}T) | <0.1% <0.1% <0.1% 0.2%
Gurobi <01% <01% <0.1% -

Table: Real gap after “convergence” (25 scenarios)
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Computational experiments
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Conclusion

Summary

- Analysis of an NP-hard problem that arises as the oracle
problem in a Benders' decomposition for solving a DRO
problem.

- Show how the Frank-Wolfe algorithm can be used to progress
in the Benders’ algorithm.

- Exploration of methods for calculating upper bounds.

- Evaluate the performance of the Adapted Benders’
decomposition.
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