Methods to obtain UB

Computational experiments

Solving a convex quadratic maximization problem appearing in some distributionally robust problem

Mathis Azéma (ENPC, Paris, France)

Supervisors: Vincent Leclère, Wim Van Ackooij (EDF R&D)

EUROPT

June 30th, 2025

École nationale des ponts et chaussées

Origin of the	quadratic	problem
00000000		

$$\max_{x \in \mathbb{R}^{n}, y \in \mathbb{R}^{m}} \quad d^{\top}y + c^{\top}x + \|x\|_{2}^{2}$$

s.t.
$$Ax + Ty = b,$$
$$x \ge 0, \ y \ge 0$$

- \rightarrow Appears as the **subproblem in a Benders' decomposition** for a Distributionally Robust Optimization (DRO) problem.
- $\rightarrow\,$ Solving it to optimality provides the tightest possible upper bound.
- \rightarrow The problem is **NP-hard**.
- \rightarrow Not necessary to solve it at optimality at each iteration!

Origin of the	quadratic	problem
00000000		

Computational experiments

$$\max_{\substack{x \in \mathbb{R}^{n}, y \in \mathbb{R}^{m} \\ \text{s.t.}}} d^{\top}y + c^{\top}x + \|x\|_{2}^{2}$$

s.t. $Ax + Ty = b,$
 $x \ge 0, y \ge 0$

- → Appears as the **subproblem in a Benders' decomposition** for a Distributionally Robust Optimization (DRO) problem.
- $\rightarrow\,$ Solving it to optimality provides the tightest possible upper bound.
- \rightarrow The problem is **NP-hard**.
- \rightarrow Not necessary to solve it at optimality at each iteration!

Origin of the	quadratic	problem
00000000		

Computational experiments

$$\max_{x \in \mathbb{R}^{n}, y \in \mathbb{R}^{m}} \quad d^{\top}y + c^{\top}x + \|x\|_{2}^{2}$$

s.t.
$$Ax + Ty = b,$$
$$x \ge 0, \ y \ge 0$$

- \rightarrow Appears as the **subproblem in a Benders' decomposition** for a Distributionally Robust Optimization (DRO) problem.
- $\rightarrow\,$ Solving it to optimality provides the tightest possible upper bound.
- \rightarrow The problem is **NP-hard**.
- \rightarrow Not necessary to solve it at optimality at each iteration!

Origin of the	quadratic	problem
00000000		

$$\max_{x \in \mathbb{R}^{n}, y \in \mathbb{R}^{m}} \quad d^{\top}y + c^{\top}x + \|x\|_{2}^{2}$$

s.t.
$$Ax + Ty = b,$$
$$x \ge 0, y \ge 0$$

- → Appears as the **subproblem in a Benders' decomposition** for a Distributionally Robust Optimization (DRO) problem.
- $\rightarrow\,$ Solving it to optimality provides the tightest possible upper bound.
- \rightarrow The problem is **NP-hard**.
- \rightarrow Not necessary to solve it at optimality at each iteration!

Origin of the	quadratic	problem
000000000		

Contents

Origin of the quadratic problem

- Unit Commitment
- Distributionnally Robust Optimization

2 Linearization

- Frank-Wolfe Algorithm
- Starting point of Frank-Wolfe Algorithm

3 Methods to obtain Upper Bounds

- KKT reformulation
- PSD relaxation
- Piecewise linear upper approximation

4 Computational experiments

Origin of th	e quadratic	problem
0000000		

Contents

1 Origin of the quadratic problem

- Unit Commitment
- Distributionnally Robust Optimization

Linearization

- Frank-Wolfe Algorithm
- Starting point of Frank-Wolfe Algorithm

3 Methods to obtain Upper Bounds

- KKT reformulation
- PSD relaxation
- Piecewise linear upper approximation

4 Computational experiments

Deterministic UC Problem

- $\mathcal{M}:$ set of units
- T: time horizon
- $\boldsymbol{\xi} \in \mathbb{R}^{\mathcal{T}}$: demand vector
- x_i: commitment variables (binary).
- y_i : production variables (continuous).

$$\min_{x_i, y_i} \quad \sum_{i \in \mathcal{M}} c_i^\top x_i + \sum_{i \in \mathcal{M}} b_i^\top y_i \\ s.t. \quad x_i \in X_i, \qquad \forall i \in \mathcal{M} \\ y_i \in Y_i(x_i) \qquad \forall i \in \mathcal{M} \\ \sum_{i \in \mathcal{M}} y_i = \xi$$

Uncertainty on the demand.

2-stage assumption:

1st stage: commitment variables (binary) 2nd stage: production variables (continuous)

$$\min_{x_i, y_i} \quad c^\top x + b^\top y \\ s.t. \quad x \in X \\ y_i \in Y_i(x_i) \quad \forall i \in \mathcal{M} \\ \sum_{i \in \mathcal{M}} y_i = \boxed{\xi} ?$$

Uncertainty on the demand.

2-stage assumption:

1st stage: commitment variables (binary) 2nd stage: production variables (continuous)

$$\min_{\substack{x_i, y_i \\ s.t. \\ y_i \in X}} c^\top x + b^\top y \\ s.t. \quad x \in X \\ y_i \in Y_i(x_i) \qquad \forall i \in \mathcal{M} \\ \sum_{i \in \mathcal{M}} y_i = \xi$$

Uncertainty on the demand.

2-stage assumption:

1st stage: commitment variables (binary) 2nd stage: production variables (continuous)

$$\min_{x_i} \quad c^\top x + \min_{\substack{y_i: y_i \in Y_i(x_i) \\ \sum_{i \in \mathcal{M}} y_i = \xi}} b^\top y$$

s.t. $x \in X$

Uncertainty on the demand.

2-stage assumption:

1st stage: commitment variables (binary)2nd stage: production variables (continuous)

 $\min_{x_i} \quad c^\top x + Q(x,\xi) \\ s.t. \quad x \in X$

 $Q(x,\xi)$: recourse value representing the optimal cost of the second stage, considering which units are on or off (first stage) and the demand ξ

$$Q(x,\xi) = \max_{\alpha,\beta,\gamma} \alpha^{\top} \xi + \beta^{\top} x + \gamma = \max_{k \in \mathcal{K}} \alpha_{k}^{\top} \xi + \beta_{k}^{\top} x + \gamma_{k}$$

s.t. $(\alpha, \beta, \gamma) \in \Lambda$

Computational experiments

Distributionnally Robust Optimization

$$\min_{x \in X} \quad c^{\top} x + \max_{\mathbb{Q} \in \mathcal{P}} \mathbb{E}_{\xi \sim \mathbb{Q}}[Q(x,\xi)]$$

Interest

Both Robust Optimization and Stochastic Optimization are special cases of DRO.

Stochastic Optimization: min $c^{\top}x + \mathbb{E}_{\xi \sim \mathbb{P}_0}[Q(x,\xi)]$ **Robust Optimization**: $\min_{x \in X} c^{\top} x + \max_{\xi \in U} Q(x, \xi)$

 $\mathcal{P} = \{\mathbb{Q} \in \mathcal{B}(\mathcal{U})\}$

 \Rightarrow How should we select \mathcal{P} ?

Methods to obtain UB

Computational experiments

Distributionnally Robust Optimization

$$\min_{x \in X} \quad c^\top x + \max_{\substack{\mathbb{Q} \in \mathcal{P}}} \mathbb{E}_{\xi \sim \mathbb{Q}}[Q(x,\xi)]$$

Interest

Both Robust Optimization and Stochastic Optimization are special cases of DRO.

Stochastic Optimization:

 $\min_{x\in X} c^{\top}x + \mathbb{E}_{\xi\sim\mathbb{P}_0}[Q(x,\xi)]$

 $\mathcal{P} = \{\mathbb{P}_0\}$

Robust Optimization:

$$\min_{x \in X} c^\top x + \max_{\xi \in \mathcal{U}} Q(x,\xi)$$

$$\mathcal{P} = \{\mathbb{Q} \in \mathcal{B}(\mathcal{U})\}$$

 \Rightarrow How should we select \mathcal{P} ?

Methods to obtain UB

Computational experiments

Distributionnally Robust Optimization

$$\min_{x \in X} \quad c^\top x + \max_{\substack{\mathbb{Q} \in \mathcal{P}}} \mathbb{E}_{\xi \sim \mathbb{Q}}[Q(x,\xi)]$$

Interest

Both Robust Optimization and Stochastic Optimization are special cases of DRO.

Stochastic Optimization:

 $\min_{x \in X} c^{\top} x + \mathbb{E}_{\xi \sim \mathbb{P}_0}[Q(x,\xi)]$

 $\mathcal{P} = \{\mathbb{P}_0\}$

Robust Optimization:

$$\min_{x \in X} c^\top x + \max_{\xi \in \mathcal{U}} Q(x,\xi)$$

$$\mathcal{P} = \{\mathbb{Q} \in \mathcal{B}(\mathcal{U})\}$$

 \Rightarrow How should we select \mathcal{P} ?

Wasserstein distance-based ambiguity sets

$$\min_{x \in X} \quad c^{\top} x + \max_{\mathbb{Q} \in \mathcal{P}} \mathbb{E}_{\xi \sim \mathbb{Q}}[Q(x,\xi)]$$

Idea: $\ensuremath{\mathcal{P}}$ has to include distributions "close" to the empirical one.

 $\mathcal{P} = \{\mathbb{Q} \in \mathcal{B}(\mathbb{R}^{\mathcal{T}}) \mid W_{\rho}(\mathbb{Q}, \mathbb{P}_0) \leq \theta\}$

- $\mathbb{P}_0 = \frac{1}{N} \sum_{i \in [N]} \delta_{\zeta_i}$: empirical distribution

- W_p : Wasserstein distance of order p defined with the cost function $c_p(\xi,\zeta) = \|\xi - \zeta\|_p$.

$$p = 1$$
:

>

- Reformulation with linear programs
- Actually, it is the same problem as with $\mathcal{P} = \{\mathbb{P}_0\}$.

$$p = 2$$
:

- Reformulation with non convex quadratic programs.
- Leads to better solutions !

Wasserstein distance-based ambiguity sets

$$\min_{x \in X} \quad c^{\top} x + \max_{\mathbb{Q} \in \mathcal{P}} \mathbb{E}_{\xi \sim \mathbb{Q}}[Q(x,\xi)]$$

Idea: ${\mathcal P}$ has to include distributions "close" to the empirical one.

 $\mathcal{P} = \{ \mathbb{Q} \in \mathcal{B}(\mathbb{R}^{T}) \mid W_{p}(\mathbb{Q}, \mathbb{P}_{0}) \leq \theta \}$

- $\mathbb{P}_0 = \frac{1}{N} \sum_{i \in [N]} \delta_{\zeta_i}$: empirical distribution

- W_p : Wasserstein distance of order p defined with the cost function $c_p(\xi,\zeta) = \|\xi - \zeta\|_p$.

$$p = 1$$
:

x

- Reformulation with linear programs
- Actually, it is the same problem as with \$\mathcal{P} = {\mathbb{P}_0}\$.

$$p = 2$$
:

- Reformulation with non convex quadratic programs.
- Leads to better solutions !

 Origin of the quadratic problem
 Linearization
 Methods to obtain UB
 Computational experion

 0000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 0000000
 000000
 000000

DRO Unit Commitment problem

Idea: ${\cal P}$ has to include distributions "close" to the empirical one. Wasserstein distance-based ambiguity sets

$$\mathcal{P} = \left\{ \mathbb{Q} \mid supp(\mathbb{Q}) \subset \mathbb{R}^{T}, \ W_{2}(\mathbb{Q}, \mathbb{P}_{0}) \leq \theta \right\}, \qquad \mathbb{P}_{0} = \frac{1}{N} \sum_{i \in [N]} \delta_{\zeta_{i}}$$
$$\min_{x} \quad c^{\top}x + \max_{\substack{\mathbb{Q}: W_{2}(\mathbb{Q}, \mathbb{P}_{0}) \leq \theta \\ supp(\mathbb{Q}) \subset \mathbb{R}^{T}}} \sum_{[\lambda]} \mathbb{E}_{\mathbb{Q}}[Q(x, \xi)]$$
$$s.t. \quad x \in X$$

1

Computational experiments

1

DRO Unit Commitment problem

$$\mathcal{P} = \left\{ \mathbb{Q} \mid supp(\mathbb{Q}) \subset \mathbb{R}^{T}, \ W_{2}(\mathbb{Q}, \mathbb{P}_{0}) \leq \theta \right\}, \qquad \mathbb{P}_{0} = \frac{1}{N} \sum_{i \in [N]}^{N} \delta_{\zeta_{i}}$$
$$\min_{x, \lambda \geq 0} \quad c^{\top}x + \lambda \theta^{2} + \frac{1}{N} \sum_{i=1}^{N} \sup_{\xi \in \mathbb{R}^{T}} \left(Q(x, \xi) - \lambda \|\xi - \zeta_{i}\|_{2}^{2} \right)$$
$$s.t. \quad x \in X$$

Linearization

Methods to obtain UE

Computational experiments 000000

1

DRO Unit Commitment problem

$$\mathcal{P} = \left\{ \mathbb{Q} \,|\, supp(\mathbb{Q}) \subset \mathbb{R}^{T}, \, W_{2}(\mathbb{Q}, \mathbb{P}_{0}) \leq \theta \right\}, \qquad \mathbb{P}_{0} = \frac{1}{N} \sum_{i \in [N]}^{N} \delta_{\zeta_{i}}$$
$$\min_{x, \lambda \geq 0} \quad c^{\top}x + \lambda \theta^{2} + \frac{1}{N} \sum_{i=1}^{N} \max_{\xi \in \mathbb{R}^{T}, k \in [K]} \left(\alpha_{k}^{\top} \xi + \beta_{k}^{\top} x + \gamma_{k} - \lambda \|\xi - \zeta_{i}\|^{2} \right)$$
$$s.t. \quad x \in X$$

Linearization

Methods to obtain UE

Computational experiments

1

DRO Unit Commitment problem

$$\mathcal{P} = \left\{ \mathbb{Q} \,|\, supp(\mathbb{Q}) \subset \mathbb{R}^{T}, \, W_{2}(\mathbb{Q}, \mathbb{P}_{0}) \leq \theta \right\}, \qquad \mathbb{P}_{0} = \frac{1}{N} \sum_{i \in [N]} \delta_{\zeta_{i}}$$
$$\min_{x,\lambda \geq 0} \quad c^{\top}x + \lambda\theta^{2} + \frac{1}{N} \sum_{i=1}^{N} \max_{k \in [K]} \left(\beta_{k}^{\top}x + \gamma_{k} + \max_{\xi \in \mathbb{R}^{T}} (\alpha_{k}^{\top}\xi - \lambda \|\xi - \zeta_{i}\|^{2}) \right)$$
$$s.t. \quad x \in X$$

Linearization

Methods to obtain UE

Computational experiments

1

DRO Unit Commitment problem

$$\mathcal{P} = \left\{ \mathbb{Q} \,|\, supp(\mathbb{Q}) \subset \mathbb{R}^{T}, \, W_{2}(\mathbb{Q}, \mathbb{P}_{0}) \leq \theta \right\}, \qquad \mathbb{P}_{0} = \frac{1}{N} \sum_{i \in [N]} \delta_{\zeta_{i}}$$
$$\min_{x, \lambda \geq 0} \quad c^{\top}x + \lambda\theta^{2} + \frac{1}{N} \sum_{i=1}^{N} \max_{k \in [K]} \left(\beta_{k}^{\top}x + \gamma_{k} + \alpha_{k}^{\top}\zeta_{i} + \frac{\|\alpha_{k}\|_{2}^{2}}{4\lambda} \right)$$
$$s.t. \quad x \in X$$

Linearization

Methods to obtain UE

Computational experiments 000000

DRO Unit Commitment problem

$$\mathcal{P} = \left\{ \mathbb{Q} \mid supp(\mathbb{Q}) \subset \mathbb{R}^{T}, \ W_{2}(\mathbb{Q}, \mathbb{P}_{0}) \leq \theta \right\}, \qquad \mathbb{P}_{0} = \frac{1}{N} \sum_{i \in [N]} \delta_{\zeta_{i}}$$

$$\sup_{x, \lambda \geq 0, z \geq 0, w \geq 0} \quad c^{\top}x + w\theta^{2} + \frac{1}{N} \sum_{i=1}^{N} z_{i}$$

$$s.t. \quad x \in X$$

$$w \leq \frac{1}{\lambda}$$

$$z_{i} \geq \left(\alpha_{k}^{\top}\zeta_{i} + \beta_{k}^{\top}x + \gamma_{k} + \frac{\lambda \|\alpha_{k}\|_{2}^{2}}{4} \right) \quad \forall k \in [K]$$

Linearization

Methods to obtain UB

Computational experiments

DRO Unit Commitment problem

Idea: \mathcal{P} has to include distributions "close" to the empirical one. Wasserstein distance-based ambiguity sets

$$\mathcal{P} = \left\{ \mathbb{Q} \mid supp(\mathbb{Q}) \subset \mathbb{R}^{T}, \ W_{2}(\mathbb{Q}, \mathbb{P}_{0}) \leq \theta \right\}, \qquad \mathbb{P}_{0} = \frac{1}{N} \sum_{i \in [N]}^{N} \delta_{\zeta_{i}}$$
$$\min_{x, \lambda \geq 0, z \geq 0, w \geq 0} \quad c^{\top}x + w\theta^{2} + \frac{1}{N} \sum_{i=1}^{N} z_{i}$$
$$s.t. \quad x \in X$$
$$w \leq \frac{1}{\lambda}$$
$$z_{i} \geq \left(\alpha_{k}^{\top}\zeta_{i} + \beta_{k}^{\top}x + \gamma_{k} + \frac{\lambda \|\alpha_{k}\|_{2}^{2}}{4} \right) \quad \forall k \in [K]$$

 \implies Benders' algorithm

Linearizatio

Methods to obtain UB

Computational experiments 000000

Benders algorithm DRO

Linearizatio

Methods to obtain UB

Computational experiments 000000

Benders algorithm DRO

Comparison risk-neutral/ DRO subproblems

Time spent on instance with 50 units and 1 random demand

 \implies dimension of the quadratic term: T = 24

- If we have 100 iterations and 100 scenarios, we have to solve 10,000 subproblems.
- Idea: Use non-optimal dual solutions!

Comparison risk-neutral/ DRO subproblems

Time spent on instance with 50 units and 1 random demand

 \implies dimension of the quadratic term: T = 24

- If we have 100 iterations and 100 scenarios, we have to solve 10,000 subproblems.
- Idea: Use non-optimal dual solutions!

Contents

Origin of the quadratic problem

- Unit Commitment
- Distributionnally Robust Optimization

2 Linearization

- Frank-Wolfe Algorithm
- Starting point of Frank-Wolfe Algorithm

3 Methods to obtain Upper Bounds

- KKT reformulation
- PSD relaxation
- Piecewise linear upper approximation

4 Computational experiments

Origin of the quadratic problem	Linearization ○●000000	Methods to obtain UB	Computational experiments
Notations			

Convex maximization problem: ("Hard" to solve)

$$\max_{x \in \mathbb{R}^{n}, y \in \mathbb{R}^{m}} \quad d^{\top}y + c^{\top}x + \|x\|_{2}^{2}$$

(\mathcal{P}) s.t. $Ax + Ty = b,$
 $x \ge 0, y \ge 0$

Optimal value: v^* , Optimal solution: $(x^*, y^*) \leftarrow$ Optimal cut

Linearization: ("Easy" to solve)

$$\begin{aligned} \max_{x \in \mathbb{R}^n, y \in \mathbb{R}^m} & d^\top y + (c + 2\bar{x})^\top x - \|\bar{x}\|_2^2 \\ (\mathcal{P}_\ell(\bar{x})) & \text{s.t.} & Ax + Ty = b, \\ & x \ge 0, \, y \ge 0 \end{aligned}$$

timal value: $v^{\varepsilon}(\bar{x})$, Optimal solution: $s^{\varepsilon}(\bar{x})$

Mathis Azéma

Convex quadratic maximization problem

30/06/25

10 / 25

Convex maximization problem: ("Hard" to solve)

$$\max_{\substack{x \in \mathbb{R}^{n}, y \in \mathbb{R}^{m} \\ x \geq 0, y \geq 0}} d^{\top}y + c^{\top}x + \|x\|_{2}^{2}$$
(P) s.t.
$$Ax + Ty = b,$$

$$x \geq 0, y \geq 0$$

Optimal value: v^* , Optimal solution: $(x^*, y^*) \leftarrow$ Optimal cut

Linearization: ("Easy" to solve)

$$egin{aligned} & \max_{x\in\mathbb{R}^n,y\in\mathbb{R}^m} & d^ op y + (c+2ar x)^ op x - \|ar x\|_2^2 \ & (\mathcal{P}_\ell(ar x)) & ext{ s.t. } & Ax + Ty = b, \ & x\geq 0, \ y\geq 0 \end{aligned}$$

Optimal value: $v^{\ell}(\bar{x})$, Optimal solution: $s^{\ell}(\bar{x}) \leftarrow$ Valid cut

Linearization

Methods to obtain UB

Computational experiments

Frank-Wolfe Algorithm

$$f(x,y) = d^{\top}y + c^{\top}x + ||x||_2^2$$

Choice of the step length α_k by solving:

 $\max_{\alpha \in [0,1]} f((x_k, y_k) + \alpha(p_k^x, p_k^y))$

⇒ By convexity, $\alpha_k \in \{0,1\}$ ⇒ $(x_{k+1}, y_{k+1}) = s^{\ell}(x_k)$. ⇒ The sequence $(f(x_k, y_k))_{k\geq 1}$ is strictly increasing. ⇒ Frank-Wolfe Algorithm **terminates**.

Linearization

Methods to obtain UB

Computational experiments

Frank-Wolfe Algorithm

Choice of the step length α_k by solving:

 $\max_{\alpha \in [0,1]} f((x_k, y_k) + \alpha(p_k^x, p_k^y))$

⇒ By convexity, $\alpha_k \in \{0,1\}$ ⇒ $(x_{k+1}, y_{k+1}) = s^{\ell}(x_k)$. ⇒ The sequence $(f(x_k, y_k))_{k\geq 1}$ is strictly increasing. ⇒ Frank-Wolfe Algorithm **terminates**.

Computational experiments

Frank-Wolfe Algorithm

Choice of the step length α_k by solving:

 $\max_{\alpha \in [0,1]} f((x_k, y_k) + \alpha(p_k^x, p_k^y))$

⇒ By convexity, $\alpha_k \in \{0,1\}$ ⇒ $(x_{k+1}, y_{k+1}) = s^{\ell}(x_k)$. ⇒ The sequence $(f(x_k, y_k))_{k\geq 1}$ is strictly increasing. ⇒ Frank-Wolfe Algorithm **terminates**.

Linearization

Methods to obtain UB

Computational experiments

Frank-Wolfe Algorithm

$$f(x,y) = d^{\top}y + c^{\top}x + ||x||_2^2$$

Choice of the step length α_k by solving:

 $\max_{\alpha \in [0,1]} f((x_k, y_k) + \alpha(p_k^x, p_k^y))$

⇒ By convexity, $\alpha_k \in \{0,1\}$ ⇒ $(x_{k+1}, y_{k+1}) = s^{\ell}(x_k)$. ⇒ The sequence $(f(x_k, y_k))_{k\geq 1}$ is strictly increasing. ⇒ Frank-Wolfe Algorithm **terminates**.

Linearization

Methods to obtain UB

Computational experiments

Frank-Wolfe Algorithm

$$f(x,y) = d^{\top}y + c^{\top}x + ||x||_2^2$$

Choice of the step length α_k by solving:

 $\max_{\alpha \in [0,1]} f((x_k, y_k) + \alpha(p_k^x, p_k^y))$

⇒ By convexity, $\alpha_k \in \{0,1\}$ ⇒ $(x_{k+1}, y_{k+1}) = s^{\ell}(x_k)$. ⇒ The sequence $(f(x_k, y_k))_{k\geq 1}$ is strictly increasing. ⇒ Frank-Wolfe Algorithm **terminates**.
Linearization

Methods to obtain UB

Computational experiments

Frank-Wolfe Algorithm

$$f(x,y) = d^{\top}y + c^{\top}x + ||x||_2^2$$

Choice of the step length α_k by solving:

 $\max_{\alpha \in [0,1]} f((x_k, y_k) + \alpha(p_k^x, p_k^y))$

⇒ By convexity, $\alpha_k \in \{0,1\}$ ⇒ $(x_{k+1}, y_{k+1}) = s^{\ell}(x_k)$. ⇒ The sequence $(f(x_k, y_k))_{k\geq 1}$ is strictly increasing. ⇒ Frank-Wolfe Algorithm **terminates**.

Linearization

Methods to obtain UB

Computational experiments

Frank-Wolfe Algorithm

$$f(x,y) = d^{\top}y + c^{\top}x + ||x||_2^2$$

Choice of the step length α_k by solving:

$$\max_{\alpha \in [0,1]} f((x_k, y_k) + \alpha(p_k^x, p_k^y))$$

⇒ By convexity, $\alpha_k \in \{0,1\}$ ⇒ $(x_{k+1}, y_{k+1}) = s^{\ell}(x_k)$. ⇒ The sequence $(f(x_k, y_k))_{k \ge 1}$ is strictly increasing. ⇒ Frank-Wolfe Algorithm **terminates**.

Linearization

Methods to obtain UB

Computational experiments

Frank-Wolfe Algorithm

Choice of the step length α_k by solving:

$$\max_{\alpha \in [0,1]} f((x_k, y_k) + \alpha(p_k^x, p_k^y))$$

 $\implies \text{By convexity, } \alpha_k \in \{0,1\} \implies (x_{k+1}, y_{k+1}) = s^{\ell}(x_k).$ $\implies \text{The sequence } (f(x_k, y_k))_{k \ge 1} \text{ is strictly increasing.}$

 \Rightarrow Frank-Wolfe Algorithm **terminates**

Linearization

Methods to obtain UB

Computational experiments

Frank-Wolfe Algorithm

Choice of the step length α_k by solving:

$$\max_{\alpha \in [0,1]} f((x_k, y_k) + \alpha(p_k^x, p_k^y))$$

 $\implies \text{By convexity, } \alpha_k \in \{0,1\} \implies (x_{k+1}, y_{k+1}) = s^{\ell}(x_k).$

- \implies The sequence $(f(x_k, y_k))_{k \ge 1}$ is strictly increasing.
- \implies Frank-Wolfe Algorithm **terminates**.

1st starting point strategy: the non-DRO solution

Linearized problem with $\bar{x} = 0$	Stochastic Optimization
$\max_{x \in \mathbb{R}^n, y \in \mathbb{R}^m} d^\top y + (c + 2\bar{x})^\top x - \ \bar{x}\ _2^2$	$\max_{x \in \mathbb{R}^n, y \in \mathbb{R}^m} d^\top y + c^\top x$
s.t. $Ax + Ty = b$,	s.t. $Ax + Ty = b$,
$x \ge 0, \ y \ge 0$	$x \ge 0, \ y \ge 0$

- The DRO problem is in general "close" to the empirical one.
- Starting with $x_0 = 0$ is in general a good choice.

2nd starting point strategy: Sampling

Definition (Attraction field of a face F)

The attraction field of a face F at \bar{x} is the set of points P(F) such that the linearized problem at \bar{x} has F as the set of optimal solutions.

Proposition

The set P(F) is a **polyhedron**. $P(x^*)$ has a **non-zero measure**. A point is a local optimum if and only if it belongs to its attraction field.

Figure: Maximizing $||x||_2^2$

Methods to obtain UB

Computational experiments

2nd starting point strategy: Sampling

Definition (Attraction field of a face F)

The attraction field of a face F at \bar{x} is the set of points P(F) such that the linearized problem at \bar{x} has F as the set of optimal solutions.

Proposition

The set P(F) is a **polyhedron**. $P(x^*)$ has a **non-zero measure**. A point is a local optimum if and only if it belongs to its attraction field.

- FW algorithm finds a local optimum.
- Randomly draw the starting point.

Figure: Maximizing $||x||_2^2$

3rd starting point strategy: Discretize the space

Proposition

Let \bar{x} and v(x, y) defined by :

$$v(x,y) = d^{\top}y + c^{\top}x + ||x||_2^2$$

the following inequality holds:

$$v^{\ell}(ar{x}) \leq v(s^{\ell}(ar{x})) \leq v^{*} \leq v^{\ell}(ar{x}) + \|ar{x} - x^{*}\|^{2}.$$

Corollary

```
Let \varepsilon > 0 and X \subset \mathbb{R}^n such that:
```

 $\max_{x \in P} dist(x, X) \le \varepsilon \qquad dist(x, X) = \min_{\bar{x} \in X} \|x - \bar{x}\|_2$

Define $v^{\ell}(X) = \max_{x \in X} v^{\ell}(x)$. Then, the following inequalities hold:

 $v^{\ell}(X) \le v^* \le \varepsilon^2 + v^{\ell}(X)$

3rd starting point strategy: Discretize the space

Proposition

Let \bar{x} and v(x, y) defined by :

$$v(x,y) = d^{\top}y + c^{\top}x + ||x||_2^2$$

the following inequality holds:

$$v^\ell(ar x) \leq v(s^\ell(ar x)) \leq v^* \leq v^\ell(ar x) + \|ar x - x^*\|^2.$$

Corollary

Let $\varepsilon > 0$ and $X \subset \mathbb{R}^n$ such that:

$$\max_{x \in P} dist(x, X) \le \varepsilon \qquad dist(x, X) = \min_{\bar{x} \in X} \|x - \bar{x}\|_2$$

Define $v^{\ell}(X) = \max_{x \in X} v^{\ell}(x)$. Then, the following inequalities hold:

 $v^{\ell}(X) \leq v^* \leq \varepsilon^2 + v^{\ell}(X)$

A MILP to solve the discretized problem

Corollary

Let
$$\varepsilon > 0$$
 and $X \subset \mathbb{R}^n$ such that:

$$\max_{x \in P} dist(x, X) \le \varepsilon \qquad dist(x, X) = \min_{\bar{x} \in X} \|x - \bar{x}\|_2$$
Define $v^{\ell}(X) = \max_{x \in X} v^{\ell}(x)$. Then, the following inequalities hold:
 $v^{\ell}(X) \le v^* \le \varepsilon^2 + v^{\ell}(X)$

⇒ Linearization through binary variables
 ⇒ MILP

A MILP to solve the discretized problem

Corollary

Let
$$\varepsilon > 0$$
 and $X \subset \mathbb{R}^n$ such that:

$$\max_{x \in P} dist(x, X) \le \varepsilon \qquad dist(x, X) = \min_{\bar{x} \in X} \|x - \bar{x}\|_2$$
Define $v^{\ell}(X) = \max_{x \in X} v^{\ell}(x)$. Then, the following inequalities hold:
 $v^{\ell}(X) \le v^* \le \varepsilon^2 + v^{\ell}(X)$

Methods to obtain UB

Computational experiments

Adapted Benders' Algorithm

Origin of the	quadratic	problem
00000000		

Contents

Origin of the quadratic problem

- Unit Commitment
- Distributionnally Robust Optimization

2 Linearization

- Frank-Wolfe Algorithm
- Starting point of Frank-Wolfe Algorithm

3 Methods to obtain Upper Bounds

- KKT reformulation
- PSD relaxation
- Piecewise linear upper approximation

4 Computational experiments

KKT reformulation

$$\begin{array}{ll} \max_{x\in\mathbb{R}^n,y\in\mathbb{R}^m} & d^\top y + c^\top x + \|x\|_2^2\\ \text{s.t.} & Ax + Ty = b,\\ & x\geq 0, \ y\geq 0 \end{array}$$

KKT conditions \implies MILP.

- \rightarrow **Advantage:** Provide optimal solution.
- → Drawback: Large number of binary variables.
- ightarrow Worst than Gurobi solving directly the quadratic problem

KKT reformulation

$$\max_{x \in \mathbb{R}^{n}, y \in \mathbb{R}^{m}} \quad d^{\top}y + c^{\top}x + \|x\|_{2}^{2}$$

s.t.
$$Ax + Ty = b,$$
$$x \ge 0, \ y \ge 0$$

KKT conditions \implies MILP.

- \rightarrow **Advantage:** Provide optimal solution.
- → Drawback: Large number of binary variables.
- ightarrow Worst than Gurobi solving directly the quadratic problem

KKT reformulation

$$\max_{x \in \mathbb{R}^{n}, y \in \mathbb{R}^{m} } \quad d^{\top}y + c^{\top}x + \|x\|_{2}^{2}$$
s.t.
$$Ax + Ty = b,$$
$$x \ge 0, \ y \ge 0$$

 $\mathsf{KKT} \text{ conditions } \Longrightarrow \mathsf{MILP}.$

- \rightarrow **Advantage:** Provide optimal solution.
- → **Drawback:** Large number of binary variables.
- $\rightarrow\,$ Worst than Gurobi solving directly the quadratic problem

Linearization

Methods to obtain UB ○○●○○

Computational experiments

PSD relaxation

$$\max_{x \in \mathbb{R}^{n}, y \in \mathbb{R}^{m}} \quad d^{\top}y + c^{\top}x + \|x\|_{2}^{2}$$

s.t.
$$Ax + Ty = b,$$
$$x \ge 0, \ y \ge 0$$

Linearizatio

Computational experiments 000000

PSD relaxation

$$\max_{x \in \mathbb{R}^{n}, y \in \mathbb{R}^{m}} \quad d^{\top}y + c^{\top}x + \|x\|_{2}^{2}$$

s.t.
$$Ax + Ty = b,$$
$$x \ge 0, \ y \ge 0$$

PSD relaxation first order:

$$egin{aligned} \max_{x\in\mathbb{R}^n,y\in\mathbb{R}^m_+} & d^ op y+c^ op x+\mathit{Tr}(X) \ & ext{ s.t. } & \mathit{Ax}+\mathit{Ty}=b, \ & y\geq 0, \, X=egin{bmatrix} 1 & x^ op \ x & xx^ op \end{bmatrix} \end{aligned}$$

Linearizatio

Methods to obtain UB

Computational experiments 000000

PSD relaxation

$$\max_{x \in \mathbb{R}^{n}, y \in \mathbb{R}^{m}} \quad d^{\top}y + c^{\top}x + \|x\|_{2}^{2}$$

s.t.
$$Ax + Ty = b,$$
$$x \ge 0, \ y \ge 0$$

PSD relaxation first order:

$$egin{aligned} \max_{y\in\mathbb{R}^m_+} & d^ op y+c^ op X_{1,.}+\mathit{Tr}(X) \\ ext{s.t.} & \mathcal{A}X_{1,.}+\mathit{Ty}=b \\ & X\succeq 0 \\ & y\geq 0 \end{aligned}$$

Linearizatio

Methods to obtain UB $\circ\circ\circ\circ\circ$

Computational experiments 000000

PSD relaxation

$$\max_{x \in \mathbb{R}^{n}, y \in \mathbb{R}^{m}} \quad d^{\top}y + c^{\top}x + \|x\|_{2}^{2}$$

s.t.
$$Ax + Ty = b,$$
$$x \ge 0, \ y \ge 0$$

PSD relaxation first order:

$$\begin{array}{ll} \max_{y \in \mathbb{R}^m_+} & d^\top y + c^\top X_{1,.} + \mathit{Tr}(X) \\ \text{s.t.} & AX_{1,.} + \mathit{Ty} = b \\ & X \succeq 0 \\ & y \ge 0 \end{array}$$

- \rightarrow **Advantage:** Tractable convex problem.
- \rightarrow Drawback: Optimal value: $+\infty$
- ightarrow Worst than Gurobi solving directly the quadratic problem

Linearization

Methods to obtain UB

Computational experiments

PSD relaxation

$$\begin{aligned} \max_{x \in \mathbb{R}^{n}, y \in \mathbb{R}^{m}_{+}} & d^{\top}y + c^{\top}x + \|x\|_{2}^{2} \\ \text{s.t.} & Ax + Ty = b, \\ & x \geq 0, \ y \geq 0 \end{aligned}$$

PSD relaxation second order:

Idea: Consider a large PSD matrix that include product variables between x and y up to order 2.

- \rightarrow **Advantage:** Bounded convex problem and good relaxation.
- → **Drawback:** Untractable with solvers like Mosek.
- ightarrow Worst than Gurobi solving directly the quadratic problem

Linearizatior

Methods to obtain UB ○○○○●

Computational experiments 000000

Linearizatior

Methods to obtain UB ○○○○●

Computational experiments 000000

Linearizatior

Methods to obtain UB ○○○○●

Computational experiments 000000

Linearizatior

Methods to obtain UB ○○○○●

Computational experiments

Linearizatior

Methods to obtain UB

Computational experiments

Linearizatior

Methods to obtain UB

Computational experiments 000000

Linearization

Methods to obtain UB

Computational experiments 000000

Linearization

Methods to obtain UB

Computational experiments 000000

Piecewise linear upper approximation

MILPs.

Number of binary variables increases at each iteration

Linearization

Methods to obtain UB

Computational experiments 000000

Piecewise linear upper approximation

MILPs.

Number of binary variables increases at each iteration Convergence in a few iterations.

Origin of the	quadratic	problem
00000000		

Linearization

Methods to obtain UB

Computational experiments •00000

Contents

Origin of the quadratic problem

- Unit Commitment
- Distributionnally Robust Optimization

2 Linearization

- Frank-Wolfe Algorithm
- Starting point of Frank-Wolfe Algorithm

3 Methods to obtain Upper Bounds

- KKT reformulation
- PSD relaxation
- Piecewise linear upper approximation

4 Computational experiments

Instances

Source: SMS++/ EDF. Instances with generators (10, 50, 100) and only one random demand (dimension: T = 24)

Source IEEE: instance with network constraints:

54 generators and 10 wind farms \implies dimension of uncertainty: $10 \times T = 240$

Instances

Source: SMS++/ EDF. Instances with generators (10, 50, 100) and only one random demand (dimension: T = 24) Source IEEE: instance with network constraints: 54 generators and 10 wind farms \implies dimension of

uncertainty: $10 \times T = 240$

Computational times

Units	10	50	100	54
ξ dimension	24	24	24	240
FW ($x_0 = 0$)	0.002s	0.002s	0.002s	0.04s
FW MILP $(x_0 \in \{0, M\}^T)$	0.01s	0.05s	0.1s	0.2s
MILP UB	0.1s	0.3s	0.5s	4s
Gurobi	0.2s	0.5s	0.75s	5s

Table: Time comparison (s)

Computational times

Units	10	50	100	54
ξ dimension	24	24	24	240
$FW(x_0=0)$	0.002s	0.002s	0.002s	0.04s
FW MILP $(x_0 \in \{0, M\}^T)$	0.01s	0.05s	0.1s	0.2s
MILP UB	0.1s	0.3s	0.5s	4s
Gurobi	0.2s	0.5s	0.75s	5s

Table: Time comparison (s)

Number of binary variables: O(dimension of $\xi \times$ Number of pieces)
Computational times

Units	10	50	100	54
ξ dimension	24	24	24	240
$FW(x_0=0)$	0.002s	0.002s	0.002s	0.04s
FW MILP $(x_0 \in \{0, M\}^T)$	0.01s	0.05s	0.1s	0.2s
MILP UB	0.1s	0.3s	0.5s	4s
Gurobi	0.2s	0.5s	0.75s	5s

Table: Time comparison (s)

Convergence Analysis

Convergence Analysis

Units	10	50	100	54
ξ dimension	24	24	24	240
$FW(x_0=0)$	3s	15s	40s	60s
FW MILP $(x_0 \in \{0, M\}^T)$	30s	167s	400s	1400s
Gurobi	35s	300s	410s	-

Table: Computational time with 25 scenarios (0.1% gap)

Units	10	50	100	54
ξ dimension	24	24	24	240
$FW(x_0=0)$	0.3%	0.2%	0.3%	0.15%
FW MILP ($x_0 \in \{0, M\}^T$)	< 0.1%	< 0.1%	< 0.1%	0.2%
Gurobi	< 0.1%	< 0.1%	< 0.1%	-

Table: Real gap after "convergence" (25 scenarios)

Origin of the quadratic problem	Linearization	Methods to obtain UB 00000	Computational experiments
Conclusion			

Summary

- Analysis of an NP-hard problem that arises as the oracle problem in a Benders' decomposition for solving a DRO problem.
- Show how the Frank-Wolfe algorithm can be used to progress in the Benders' algorithm.
- Exploration of methods for calculating upper bounds.
- Evaluate the performance of the Adapted Benders' decomposition.