Stochastic Programming

DRO 00000 Computational Experiments

Conclusion

Stochastic Programming and Distributionally Robust Optimization for Unit Commitment

Mathis Azéma (CERMICS)

Supervisors: Vincent Leclère, Wim Van Ackooij (EDF R&D)

CERMICS Young Researchers' Days

2-4 April 2025

École nationale des ponts et chaussées

Unit Commitment	Stochastic Programming	DRO 00000	Computational Experiments	Conclusion
Contents				

- 1 Unit Commitment
- 2 Stochastic Programming
- 3 Distributionnally Robust Optimization
- 4 Computational Experiments

Unit Commitment	Stochastic Programming	DRO 00000	Computational Experiments	Conclusion 00
Fundament	al results for LP	S		
Primal:		Du	al formulation:	
$\min_{x\geq 0}$	$c^{\top}x =$		$\max_{\substack{y \ge 0}} b^\top y$	
	$Ax \ge b$		$A^{ op} y \leq c$	

Unit Commitment	Stochastic Programming	DRO 00000	Computational Experiments	Conclusion 00
Fundamenta	al results for LPs	S		

Primal:

$$\min_{x \ge 0} \quad c^{ op} x \quad = \ Ax \ge b$$

$$\max_{\substack{y \ge 0 \\ }} b^\top y \\ A^\top y \le c$$

Unit Commitment	Stochastic Programming	DRO	Computational Experiments	Conclusion		
0000000	00000	00000	000	00		
Fundamental results for LPs						

Unit Commitment	Stochastic Programming	DRO	Computational Experiments	Conclusion		
0000000	00000	00000		00		
Fundamental results for LPs						

$$\max_{\substack{y \ge 0 \\ }} b^\top y \\ A^\top y \le c$$

Unit Commitment ●000000	Stochastic Programming	DRO 00000	Computational Experiments	Conclusion 00
Contents				

- 2 Stochastic Programming
- Oistributionnally Robust Optimization
- 4 Computational Experiments
- 5 Conclusion

Unit Commitment 000000	Stochastic Programming	DRO 00000	Computational Experiments	Conclusion 00
Description				

Figure: Unit Commitment

- \mathcal{J} : set of units
- T: time horizon (T=24 for a day)
- $\xi \in \mathbb{R}^T$: vector of demand

Mathis Azéma

Description	Unit Commitment 000000	Stochastic Programming	DRO 00000	Computational Experiments	Conclusion 00
	Description				

Figure: Unit Commitment

- $\mathcal{J}:$ set of units
- *T*: time horizon (T=24 for a day)
- $\xi \in \mathbb{R}^T$: vector of demand

Variables:

- $y_{j,t}$: Power generation of the unit j is on at time t.
- $x_{j,t}$: Binary variable equal to 1 if the unit j is on at time t.

Example of Constraints:

Variables:

- $y_{j,t}$: Power generation of the unit j is on at time t.
- $x_{j,t}$: Binary variable equal to 1 if the unit j is on at time t.

Example of Constraints:

• Capacity constraints: $P_j^{min} x_{j,t} \leq y_{j,t} \leq P_j^{max} x_{j,t}$

Variables:

- $y_{j,t}$: Power generation of the unit j is on at time t.
- $x_{j,t}$: Binary variable equal to 1 if the unit j is on at time t.

Example of Constraints:

• Capacity constraints: $P_j^{min} x_{j,t} \le y_{j,t} \le P_j^{max} x_{j,t}$

Unit Commitment	Stochastic Programming	DRO 00000	Computational Experiments	Conclusion
Mathemati	cal formulation			

$$\min_{\substack{x,y \\ s.t.}} c^{\top}x + b^{\top}y$$

$$s.t. Fx \ge f$$

$$Ax + By \ge g$$

$$\sum_{j \in \mathcal{J}} y_j = \xi$$

But, in reality we have uncertainty in the demand, i.e. ξ is a random variable !

Unit Commitment	Stochastic Programming	DR O 00000	Computational Experiments	Conclusion 00
Mathemati	cal formulation			

$$\min_{\substack{x,y \\ s.t.}} c^{\top}x + b^{\top}y$$
$$s.t. Fx \ge f$$
$$Ax + By \ge g$$
$$\sum_{j \in \mathcal{J}} y_j = \xi$$

But, in reality we have uncertainty in the demand, i.e. $\boldsymbol{\xi}$ is a random variable !

- 1st stage: commitment variables x (binary)
- 2nd stage: production variables y (continuous)

The decisions x are taken without knowing the uncertainty ξ . The decisions y are taken with full knowledge of the uncertainty ξ .

$$\min_{x,y} \quad c^{\top}x + b^{\top}y^{\xi} \\ s.t. \quad Fx \ge f \\ Ax + By^{\xi} \ge g \\ \sum_{i \in \mathcal{I}} y_{i}^{\xi} = \xi$$

- 1st stage: commitment variables x (binary)
- 2nd stage: production variables y (continuous)

The decisions x are taken without knowing the uncertainty ξ . The decisions y are taken with full knowledge of the uncertainty ξ .

$$\min_{\substack{x,y \\ x,y}} c^{\top}x + b^{\top}y^{\xi}$$

s.t. $Fx \ge f$
 $Ax + By^{\xi} \ge g$
 $\sum_{i \in \mathcal{I}} y_{i}^{\xi} = \xi$

- 1st stage: commitment variables x (binary)
- 2nd stage: production variables y (continuous)

The decisions x are taken without knowing the uncertainty ξ . The decisions y are taken with full knowledge of the uncertainty ξ .

$$\min_{x} c^{\top}x + \min_{\substack{y:Ax+By^{\xi} \ge g\\\sum_{j \in \mathcal{M}} y_{j}^{\xi} = \xi}} b^{\top}y^{\xi}$$

- 1st stage: commitment variables x (binary)
- 2nd stage: production variables y (continuous)

The decisions x are taken without knowing the uncertainty ξ . The decisions y are taken with full knowledge of the uncertainty ξ .

> $\min_{x} \quad c^{\top}x + Q(x,\xi)$ s.t. $x \in X$

 $Q(x, \xi)$: recourse value representing the optimal cost of the second stage, (i.e. value of the optimal planning knowing which units are on or off (x) and the demand (ξ))

By strong duality in linear programs, Q has a primal and a dual formulation.

Primal formulation:

$$egin{aligned} Q(x,\xi) &= \min_{y} \quad b^{ op}y \ && Ax + By \geq d \ && \sum_{j \in \mathcal{M}} y_{j} = \xi \end{aligned}$$

By strong duality in linear programs, ${\bf Q}$ has a primal and a dual formulation.

Primal formulation:

$$egin{aligned} Q(x,\xi) &= \min_y \quad b^ op y \ Ax + By \geq d \ \sum_{j\in\mathcal{M}} y_j &= \xi \end{aligned}$$

$$egin{aligned} \mathcal{Q}(x,\xi) &= \max_{lpha,eta,\gamma} lpha^{ op} \xi + eta^{ op} x + \gamma \ & & & & (lpha,eta,\gamma) \in \Lambda \end{aligned}$$

By strong duality in linear programs, ${\bf Q}$ has a primal and a dual formulation.

Primal formulation:

$$egin{aligned} Q(x,\xi) &= \min_{y} \quad b^{ op}y \ Ax + By \geq d \ \sum_{j \in \mathcal{M}} y_{j} &= \xi \end{aligned}$$

$$egin{aligned} Q(x,\xi) &= \max_{lpha,eta,\gamma} lpha^{ op} \xi + eta^{ op} x + \gamma \ & & & & (lpha,eta,\gamma) \in \Lambda \end{aligned}$$

By strong duality in linear programs, ${\bf Q}$ has a primal and a dual formulation.

Primal formulation:

$$egin{aligned} Q(x,\xi) &= \min_{y} \quad b^{ op}y \ && Ax + By \geq d \ && \sum_{j\in\mathcal{M}} y_j = \xi \end{aligned}$$

$$Q(x,\xi) = \max_{\alpha,\beta,\gamma} \alpha^{\top}\xi + \beta^{\top}x + \gamma$$
$$(\alpha,\beta,\gamma) \in \Lambda$$
$$= \max_{k \in [K]} \alpha_{k}^{\top}\xi + \beta_{k}^{\top}x + \gamma_{k}$$

$$\min_{x} \quad c^{\top}x + Q(x,\xi) \\ s.t. \quad x \in X$$

This problem is not well-posed, as ξ is a random variable!

Unit Commitment 000000●	Stochastic Programming	DRO 00000	Computational Experiments	Conclusion
What is th	e best decision?			

$$\min_{x} \quad c^{\top}x + Q(x,\xi) \\ s.t. \quad x \in X$$

This problem is not well-posed, as ξ is a random variable!

$$\min_{x \in X} \quad \mathbb{E}_{\xi \sim \mathbb{P}}[c^{\top}x + Q(x,\xi)]$$

Unit Commitment 000000●	Stochastic Programming	DRO 00000	Computational Experiments	Conclusion
What is th	e best decision?			

$$\min_{x} \quad c^{\top}x + Q(x,\xi) \\ s.t. \quad x \in X$$

This problem is not well-posed, as ξ is a random variable!

$$\min_{x \in X} \quad c^{\top} x + \mathbb{E}_{\xi \sim \mathbb{P}}[Q(x,\xi)]$$

 $\min_{x} \quad c^{\top}x + Q(x,\xi) \\ s.t. \quad x \in X$

This problem is not well-posed, as ξ is a random variable!

$$\min_{x\in X} \quad c^{\top}x + \mathbb{E}_{\xi\sim \mathbb{P}}[Q(x,\xi)]$$

Problem: This problem is well-posed, but the law of uncertainty \mathbb{P} is unknown ! \mathfrak{D}

 $\min_{x} \quad c^{\top}x + Q(x,\xi) \\ s.t. \quad x \in X$

This problem is not well-posed, as ξ is a random variable!

$$\min_{x \in X} \quad c^{\top}x + \mathbb{E}_{\xi \sim \mathbb{P}}[Q(x,\xi)]$$

Problem: This problem is well-posed, but the law of uncertainty \mathbb{P} is unknown ! But we have empirical data (scenarios) ξ^s forming the empirical law \mathbb{P}_0 !

Mathis Azéma

Unit Commitment	Stochastic Programming ●0000	DR0 00000	Computational Experiments	Conclusion
Contents				

- Unit Commitment
- 2 Stochastic Programming
- 3 Distributionnally Robust Optimization
- 4 Computational Experiments
- 5 Conclusion

$$\min_{x\in X} \quad c^{\top}x + \mathbb{E}_{\xi\sim \mathbb{P}}[Q(x,\xi)]$$

$$\min_{x \in X} \quad c^{\top} x + \mathbb{E}_{\xi \sim \mathbb{P}}[Q(x,\xi)]$$

We approximate $\mathbb P$ by $\mathbb P_0$

$$\min_{x\in X} \quad c^{ op}x + \mathbb{E}_{\xi\sim \mathbb{P}_0}[Q(x,\xi)]$$

Unit Commitment	Stochastic Programming 0●000	DRO 00000	Computational Experiments	Conclusion
Risk neutral:	Extensive form	ulation	(Primal formula	tion)

$$\min_{x\in X} \quad c^{ op}x + \mathbb{E}_{\xi\sim \mathbb{P}_0}[Q(x,\xi)]$$

$$\min_{x \in X} \quad c^{\top}x + \mathbb{E}_{\xi \sim \mathbb{P}_0}[Q(x,\xi)]$$

$$Q(x,\xi) = \min_{\substack{Ax+By \ge g \\ \sum_{j \in \mathcal{J}} y_j = \xi}} b^\top y$$

$$\min_{x \in X} c^{\top} x + \frac{1}{5} \sum_{s \in S} Q(x, \xi^s)$$

$$\min_{x \in X} \quad c^{\top}x + \mathbb{E}_{\xi \sim \mathbb{P}_0}[Q(x,\xi)]$$

$$Q(x,\xi) = \min_{\substack{Ax+By \ge g \\ \sum_{j \in \mathcal{J}} y_j = \xi}} b^\top y$$

$$\min_{x \in X} c^{\top} x + \frac{1}{S} \sum_{s \in S} \min_{\substack{Ax + By^s \ge g \\ \sum_{j \in J} y_j^s = \xi^s}} b^{\top} y^s$$

$$\min_{\mathbf{x}\in \boldsymbol{X}} \quad \boldsymbol{c}^{\top}\boldsymbol{x} + \mathbb{E}_{\xi\sim\mathbb{P}_0}[\boldsymbol{Q}(\boldsymbol{x},\xi)]$$

$$Q(x,\xi) = \min_{\substack{Ax+By \ge g \\ \sum_{j \in \mathcal{J}} y_j = \xi}} b^\top y$$

$$\begin{array}{ll} \min_{x,y} & c^{\top}x + \frac{1}{S}\sum_{s\in\mathcal{S}}b^{\top}y^{s}\\ s.t. & x\in X,\\ & Ax + By^{s}\geq g \quad \forall s\in\mathcal{S}\\ & \sum_{j\in\mathcal{J}}y_{j}^{s} = \xi^{s} \quad \forall s\in\mathcal{S} \end{array}$$

1

$$\min_{\boldsymbol{x}\in\boldsymbol{X}} \quad \boldsymbol{c}^{\top}\boldsymbol{x} + \mathbb{E}_{\boldsymbol{\xi}\sim\mathbb{P}_0}[\boldsymbol{Q}(\boldsymbol{x},\boldsymbol{\xi})]$$

$$Q(x,\xi) = \min_{\substack{Ax+By \ge g \\ \sum_{j \in \mathcal{J}} y_j = \xi}} b^\top y$$

$$\begin{split} \min_{x,y} \quad c^\top x + \frac{1}{S} \sum_{s \in \mathcal{S}} b^\top y^s \\ s.t. \quad x \in X, \\ Ax + By^s \geq g \quad \forall s \in \mathcal{S} \\ \sum_{j \in \mathcal{J}} y^s_j = \xi^s \quad \forall s \in \mathcal{S} \end{split}$$

 \implies We have a single (very) large problem to solve.

Unit Commitment 0000000	Stochastic Programming	DRO 00000	Computational Experiments	Conclusion 00			
Benders' Decomposition (Dual Formulation)							

$$\min_{x \in X} \quad c^{\top}x + \mathbb{E}_{\xi \sim \mathbb{P}_0}[Q(x,\xi)]$$

$$Q(x,\xi) = \max_{k \in [K]} \alpha_k^\top x + \beta_k^\top \xi + \gamma_k$$
Unit Commitment	Stochastic Programming	DRO	Computational Experiments	Conclusion
0000000	00●00	00000		00
Benders' D	ecomposition (E	Dual For	rmulation)	

$$\min_{x\in X} \quad c^{\top}x + \mathbb{E}_{\xi\sim\mathbb{P}_0}[Q(x,\xi)]$$

$$Q(x,\xi) = \max_{k \in [K]} \alpha_k^\top x + \beta_k^\top \xi + \gamma_k$$

$$\min_{x \in X} c^{\top} x + \frac{1}{5} \sum_{s \in S} Q(x, \xi^s)$$

Unit Commitment 0000000	Stochastic Programming	DRO 00000	Computational Experiments	Conclusion 00
Benders' D	ecomposition (E	Dual For	rmulation)	

$$\min_{x \in X} \quad c^{\top}x + \mathbb{E}_{\xi \sim \mathbb{P}_0}[Q(x,\xi)]$$

$$Q(x,\xi) = \max_{k \in [K]} \alpha_k^\top x + \beta_k^\top \xi + \gamma_k$$

$$\min_{x \in X} c^{ op} x + rac{1}{S} \sum_{s \in S} z_s \ z_s \geq Q(x, \xi^s)$$

Unit Commitment 0000000	Stochastic Programming	DRO 00000	Computational Experiments	Conclusion 00
Benders' D	ecomposition (E	Dual For	rmulation)	

$$\min_{x \in X} \quad c^{\top}x + \mathbb{E}_{\xi \sim \mathbb{P}_0}[Q(x,\xi)]$$

$$Q(x,\xi) = \max_{k \in [K]} \alpha_k^\top x + \beta_k^\top \xi + \gamma_k$$

$$\min_{z,x\in X} c^{\top} x + \frac{1}{S} \sum_{s\in S} z_s$$
$$z_s \ge \alpha_k^{\top} \xi^s + \beta_k^{\top} x + \gamma_k \qquad \forall k \in [K]$$

Unit Commitment	Stochastic Programming	DRO	Computational Experiments	Conclusion
0000000	00●00	00000		00
Benders' D	ecomposition (D	Dual For	mulation)	

$$\min_{x\in X} \quad c^{\top}x + \mathbb{E}_{\xi\sim\mathbb{P}_0}[Q(x,\xi)]$$

$$Q(x,\xi) = \max_{k \in [K]} \alpha_k^\top x + \beta_k^\top \xi + \gamma_k$$

$$\min_{z,x\in X} c^{\top} x + \frac{1}{5} \sum_{s\in S} z_s$$
$$z_s \ge \alpha_k^{\top} \xi^s + \beta_k^{\top} x + \gamma_k \qquad \forall k \in [K]$$

 \implies **Problem:** the extreme points $(\alpha_k, \beta_k, \gamma_k)$ are both unknown and numerous.

 \implies Cut generating algorithm.

Convergence iff

$$z_{s}^{*} \geq (\alpha^{*})^{\top} \xi^{s} + (\beta^{*})^{\top} x^{*} + \gamma^{*}$$

Unit Commitment	Stochastic Programming	DRO 00000	Computational Experiments	Conclusion 00
Drawbacks				

$$\min_{x \in X} \quad c^{\top}x + \mathbb{E}_{\xi \sim \mathbb{P}}[Q(x,\xi)]$$

Overfitting to the training scenarios. What does it mean?

Training phase We solve by one of the previous algorithms with $\mathbb{P}_0 = 50$ scenarios:

 $\min_{x\in X} \quad c^{\top}x + \mathbb{E}_{\xi\sim\mathbb{P}_0}[Q(x,\xi)]$

Let x_0 be the optimal solution.

Test phase Let $\hat{\mathbb{P}}_0$ another empirical distribution with 1000 scenarios (= very close to \mathbb{P})

$$\min_{x \in X} \quad c^{\top} x + \mathbb{E}_{\xi \sim \hat{\mathbb{P}}_0}[Q(x,\xi)]$$
$$x = x_0$$

Overfitting: x_0 performs well on the training data \mathbb{P}_0 but generalizes poorly to the test data $\hat{\mathbb{P}}_0$.

Mathis Azéma

SP and DRO for Unit Commitment

Unit Commitment	Stochastic Programming 0000●	DRO 00000	Computational Experiments	Conclusion
Drawbacks				

$$\min_{\mathbf{x}\in X} \quad c^{\top}\mathbf{x} + \mathbb{E}_{\boldsymbol{\xi}\sim\mathbb{P}}[Q(\mathbf{x},\boldsymbol{\xi})]$$

Overfitting to the training scenarios. What does it mean?

Training phase

We solve by one of the previous algorithms with $\mathbb{P}_0=50$ scenarios:

$$\min_{x\in X} \quad c^{\top}x + \mathbb{E}_{\xi\sim\mathbb{P}_0}[Q(x,\xi)]$$

Let x_0 be the optimal solution.

Test phase Let $\hat{\mathbb{P}}_0$ another empirical distribution with 1000 scenarios (= very close to \mathbb{P})

$$\min_{x \in X} \quad c^{\top} x + \mathbb{E}_{\xi \sim \hat{\mathbb{P}}_0}[Q(x,\xi)]$$
$$x = x_0$$

Overfitting: x_0 performs well on the training data \mathbb{P}_0 but generalizes poorly to the test data $\hat{\mathbb{P}}_0$.

Mathis Azéma

SP and DRO for Unit Commitment

Unit Commitment	Stochastic Programming 0000●	DRO 00000	Computational Experiments	Conclusion 00
Drawbacks				

$$\min_{\mathbf{x}\in X} \quad c^{\top}x + \mathbb{E}_{\boldsymbol{\xi}\sim\mathbb{P}}[Q(x,\xi)]$$

Overfitting to the training scenarios. What does it mean?

Training phase

We solve by one of the previous algorithms with $\mathbb{P}_0 = 50$ scenarios:

$$\min_{x\in X} \quad c^{\top}x + \mathbb{E}_{\xi\sim\mathbb{P}_0}[Q(x,\xi)]$$

Let x_0 be the optimal solution.

Test phase

Let $\hat{\mathbb{P}}_0$ another empirical distribution with 1000 scenarios (= very close to \mathbb{P})

$$\min_{x \in X} \quad c^{\top} x + \mathbb{E}_{\xi \sim \hat{\mathbb{P}}_0}[Q(x,\xi)]$$
$$x = x_0$$

Overfitting: x_0 performs well on the training data \mathbb{P}_0 but generalizes poorly to the test data $\hat{\mathbb{P}}_0$.

Mathis Azéma

SP and DRO for Unit Commitment

Unit Commitment	Stochastic Programming 0000●	DRO 00000	Computational Experiments	Conclusion 00
Drawbacks				

$$\min_{\mathbf{x}\in X} \quad c^{\top}x + \mathbb{E}_{\boldsymbol{\xi}\sim\mathbb{P}}[Q(x,\xi)]$$

Test wheee

Overfitting to the training scenarios. What does it mean?

Training phase

We solve by one of the previous algorithms with $\mathbb{P}_0 = 50$ scenarios:

Let
$$\hat{\mathbb{P}}_0$$
 another empirical
distribution with 1000 scenarios
(= very close to \mathbb{P})

$$\min_{x\in X} \quad c^{\top}x + \mathbb{E}_{\xi\sim\mathbb{P}_0}[Q(x,\xi)]$$

Let x_0 be the optimal solution.

$$\min_{x \in X} \quad c^{\top} x + \mathbb{E}_{\xi \sim \hat{\mathbb{P}}_0}[Q(x,\xi)]$$
$$x = x_0$$

Overfitting: x_0 performs well on the training data \mathbb{P}_0 but generalizes poorly to the test data $\hat{\mathbb{P}}_0$.

Mathis Azéma

SP and DRO for Unit Commitment

03/04/25 12 / 19

Unit Commitment	Stochastic Programming	DRO ●0000	Computational Experiments	Conclusion 00
Contents				

- Unit Commitment
- 2 Stochastic Programming
- 3 Distributionnally Robust Optimization
 - 4 Computational Experiments

5 Conclusion

Unit Commitment	Stochastic Programming	DRO	Computational Experiments	Conclusion
0000000	00000	o●ooo	000	00
Introduction	1			

$$\min_{x \in X} \quad c^{\top}x + \mathbb{E}_{\xi \sim \mathbb{P}}[Q(x,\xi)]$$

DRO problem:

$$\min_{x \in X} c^{\top} x + \mathbb{E}_{\xi \sim \mathbb{P}_0}[Q(x,\xi)] \qquad \min_{x \in X} c^{\top} x + \max_{\mathbb{Q} \in \mathcal{P}} \mathbb{E}_{\xi \sim \mathbb{Q}}[Q(x,\xi)]$$

- If $\mathcal{P} = \{\mathbb{P}_0\}$, the DRO problem is the SP problem.
- If *P* is sufficiently large, it includes ℙ, but an excessively large *P* leads to poor decisions.
- \implies How can we select \mathcal{P} to be better than SP?

المغربة مايرمه أحمد		 000	00
Introductior	1		

$$\min_{x \in X} \quad c^{\top} x + \mathbb{E}_{\xi \sim \mathbb{P}}[Q(x,\xi)]$$

DRO problem:

$$\min_{x \in X} c^{\top} x + \mathbb{E}_{\xi \sim \mathbb{P}_0}[Q(x,\xi)] \qquad \min_{x \in X} c^{\top} x + \max_{\mathbb{Q} \in \mathcal{P}} \mathbb{E}_{\xi \sim \mathbb{Q}}[Q(x,\xi)]$$

- If $\mathcal{P} = \{\mathbb{P}_0\}$, the DRO problem is the SP problem.
- If *P* is sufficiently large, it includes ℙ, but an excessively large *P* leads to poor decisions.
- \implies How can we select \mathcal{P} to be better than SP?

المعادمة والمسادية	0000	000	00
Introduction			

$$\min_{x \in X} \quad c^{\top} x + \mathbb{E}_{\xi \sim \mathbb{P}}[Q(x,\xi)]$$

DRO problem:

$$\min_{x \in X} c^{\top} x + \mathbb{E}_{\xi \sim \mathbb{P}_0}[Q(x,\xi)] \qquad \min_{x \in X} c^{\top} x + \max_{\mathbb{Q} \in \mathcal{P}} \mathbb{E}_{\xi \sim \mathbb{Q}}[Q(x,\xi)]$$

• If $\mathcal{P} = \{\mathbb{P}_0\}$, the DRO problem is the SP problem.

- If *P* is sufficiently large, it includes ℙ, but an excessively large *P* leads to poor decisions.
- \implies How can we select \mathcal{P} to be better than SP?

Introduction	00000	0000	000	00
Introduction				

$$\min_{x \in X} \quad c^{\top} x + \mathbb{E}_{\xi \sim \mathbb{P}}[Q(x,\xi)]$$

DRO problem:

$$\min_{x \in X} c^{\top} x + \mathbb{E}_{\xi \sim \mathbb{P}_0}[Q(x,\xi)] \qquad \min_{x \in X} c^{\top} x + \max_{\mathbb{Q} \in \mathcal{P}} \mathbb{E}_{\xi \sim \mathbb{Q}}[Q(x,\xi)]$$

- If $\mathcal{P} = \{\mathbb{P}_0\}$, the DRO problem is the SP problem.
- If \mathcal{P} is sufficiently large, it includes \mathbb{P} , but an excessively large \mathcal{P} leads to poor decisions.

 \implies How can we select \mathcal{P} to be better than SP?

Introductio				00
0000000	00000	00000	000	00

$$\min_{x \in X} \quad c^{\top} x + \mathbb{E}_{\xi \sim \mathbb{P}}[Q(x,\xi)]$$

DRO problem:

$$\min_{x \in X} c^{\top} x + \mathbb{E}_{\xi \sim \mathbb{P}_0}[Q(x,\xi)] \qquad \min_{x \in X} c^{\top} x + \max_{\mathbb{Q} \in \mathcal{P}} \mathbb{E}_{\xi \sim \mathbb{Q}}[Q(x,\xi)]$$

- If $\mathcal{P} = \{\mathbb{P}_0\}$, the DRO problem is the SP problem.
- If $\mathcal P$ is sufficiently large, it includes $\mathbb P,$ but an excessively large $\mathcal P$ leads to poor decisions.
- \implies How can we select \mathcal{P} to be better than SP?

Unit Commitment	Stochastic Programming 00000	DR0 00●00	Computational Experiments	Conclusion 00
Choice of ${\cal P}$)			

$$\min_{x \in X} \quad c^{\top} x + \max_{\mathbb{Q} \in \mathcal{P}} \mathbb{E}_{\xi \sim \mathbb{Q}}[Q(x,\xi)]$$

Wasserstein distance $W_2(\mathbb{Q},\mathbb{P})$ is a distance between the distributions \mathbb{Q} and \mathbb{P}

$$\mathcal{P} = \{\mathbb{Q} \mid W_2(\mathbb{Q}, \mathbb{P}) \leq \theta\}$$

Unit Commitment	Stochastic Programming	DRO 000●0	Computational Experiments	Conclusion 00
DRO Unit C	ommitment pro	blem		

$$\mathcal{P} = \{\mathbb{Q} \mid W_2(\mathbb{Q}, \mathbb{P}_0) \le \theta\}, \qquad \mathbb{P}_0 = \frac{1}{N} \sum_{i \in [N]} \delta_{\zeta_i}$$

Unit Commitment	Stochastic Programming	DRO 000●0	Computational Experiments	Conclusion 00
DRO Unit C	ommitment prol	olem		

$$\mathcal{P} = \{\mathbb{Q} \mid W_2(\mathbb{Q}, \mathbb{P}_0) \leq \theta\}, \qquad \mathbb{P}_0 = \frac{1}{N} \sum_{i \in [N]} \delta_{\zeta_i}$$

$$\min_{x} \quad c^{\top}x + \max_{\substack{\mathbb{Q}: \ W_2(\mathbb{Q}, \mathbb{P}_0) \leq \theta \\ supp(\mathbb{Q}) \subset \mathbb{R}^T}} \sum_{[\lambda]} \mathbb{E}_{\mathbb{Q}}[Q(x, \xi)]$$

$$s.t. \quad x \in X$$

¹Gao and Kleywegt 2016.

Unit Commitment	Stochastic Programming	DRO 000●0	Computational Experiments	Conclusion 00
DRO Unit C	Commitment prol	olem		

$$\mathcal{P} = \{ \mathbb{Q} \mid W_2(\mathbb{Q}, \mathbb{P}_0) \leq \theta \}, \qquad \mathbb{P}_0 = \frac{1}{N} \sum_{i \in [N]} \delta_{\zeta_i}$$

$$\min_{\substack{x,\lambda \ge 0 \\ s.t. \quad x \in X}} c^\top x + \lambda \theta^2 + \frac{1}{N} \sum_{i=1}^N \sup_{\xi \in \mathbb{R}^T} \left(Q(x,\xi) - \lambda \|\xi - \zeta_i\|_2^2 \right)$$

¹Gao and Kleywegt 2016.

Unit Commitment	Stochastic Programming	DR0 000●0	Computational Experiments	Conclusion 00
DRO Unit (Commitment pr	oblem		

$$\mathcal{P} = \{\mathbb{Q} \mid W_2(\mathbb{Q}, \mathbb{P}_0) \le \theta\}, \qquad \mathbb{P}_0 = \frac{1}{N} \sum_{i \in [N]} \delta_{\zeta_i}$$

$$\min_{\substack{x,\lambda \ge 0}} c^{\top}x + \lambda\theta^2 + \frac{1}{N} \sum_{i=1}^{N} \max_{\xi \in \mathbb{R}^T, k \in [K]} \left(\alpha_k^{\top} \xi + \beta_k^{\top} x + \gamma_k - \lambda \|\xi - \zeta_i\|^2 \right)$$

s.t. $x \in X$

¹Gao and Kleywegt 2016.

Unit Commitment	Stochastic Programming	DRO 000●0	Computational Experiments	Conclusion
DRO Unit	Commitment pr	oblem		

$$\mathcal{P} = \{\mathbb{Q} \mid W_2(\mathbb{Q}, \mathbb{P}_0) \le \theta\}, \qquad \mathbb{P}_0 = \frac{1}{N} \sum_{i \in [N]} \delta_{\zeta_i}$$

$$\min_{\substack{x,\lambda \ge 0}} c^{\top}x + \lambda\theta^2 + \frac{1}{N} \sum_{i=1}^{N} \max_{k \in [K]} \left(\beta_k^{\top}x + \gamma_k + \max_{\xi \in \mathbb{R}^T} (\alpha_k^{\top}\xi - \lambda \|\xi - \zeta_i\|^2) \right)$$

s.t. $x \in X$

¹Gao and Kleywegt 2016.

0000000 0000	50	00000	000	00
DRO Unit Com	mitment prot	olem		

$$\mathcal{P} = \{\mathbb{Q} \mid W_2(\mathbb{Q}, \mathbb{P}_0) \le \theta\}, \qquad \mathbb{P}_0 = \frac{1}{N} \sum_{i \in [N]} \delta_{\zeta_i}$$

$$\min_{\substack{x,\lambda \ge 0}} c^{\top}x + \lambda\theta^2 + \frac{1}{N} \sum_{i=1}^{N} \max_{k \in [K]} \left(\beta_k^{\top}x + \gamma_k + \alpha_k^{\top}\zeta_i + \frac{\|\alpha_k\|_2^2}{4\lambda} \right)$$

s.t. $x \in X$

¹Gao and Kleywegt 2016.

Unit Commitment	Stochastic Programming	DRO 000●0	Computational Experiments	Conclusion 00
DRO Unit C	ommitment prol	olem		

$$\mathcal{P} = \{ \mathbb{Q} \mid W_2(\mathbb{Q}, \mathbb{P}_0) \le \theta \}, \qquad \mathbb{P}_0 = \frac{1}{N} \sum_{i \in [N]} \delta_{\zeta_i}$$

$$\min_{\substack{x,\lambda \ge 0, z \ge 0, w \ge 0}} c^{\top} x + w\theta^2 + \frac{1}{N} \sum_{i=1}^N z_i$$
s.t. $x \in X$

$$\| (2, w - \lambda) \|_2 \le w + \lambda$$

$$z_i \ge \left(\alpha_k^{\top} \zeta_i + \beta_k^{\top} x + \gamma_k + \frac{\lambda \|\alpha_k\|_2^2}{4} \right) \quad \forall k \in [K]$$

¹Gao and Kleywegt 2016.

Unit Commitment	Stochastic Programming	DRO 000●0	Computational Experiments	Conclusion 00
DRO Unit C	ommitment prol	olem		

$$\mathcal{P} = \{ \mathbb{Q} \mid W_2(\mathbb{Q}, \mathbb{P}_0) \le \theta \}, \qquad \mathbb{P}_0 = \frac{1}{N} \sum_{i \in [N]} \delta_{\zeta_i}$$

$$\min_{\substack{x,\lambda \ge 0, z \ge 0, w \ge 0}} c^{\top} x + w\theta^2 + \frac{1}{N} \sum_{i=1}^N z_i$$

$$s.t. \quad x \in X$$

$$\| (2, w - \lambda) \|_2 \le w + \lambda$$

$$z_i \ge \left(\alpha_k^{\top} \zeta_i + \beta_k^{\top} x + \gamma_k + \frac{\lambda \|\alpha_k\|_2^2}{4} \right) \quad \forall k \in [K]$$

 \implies Benders' algorithm

¹Gao and Kleywegt 2016.

DRO

Benders algorithm DRO

Unit	Commitment

Stochastic Programming

DRO

Computational Experiments

Benders algorithm DRO

Unit Commitment	Stochastic Programming	DR0 00000	Computational Experiments ●00	Conclusion
Contents				

- Unit Commitment
- 2 Stochastic Programming
- 3 Distributionnally Robust Optimization
- 4 Computational Experiments

5 Conclusion

Unit Commitment	Stochastic Programming	DR0 00000	Computational Experiments	Conclusion
Presentation	n			

- Source: SMS++/ EDF.
- 5 instances with 10 units and 24 time steps.
- Source scenarios: https:

//data.open-power-system-data.org/time_series/

• Training on 25 scenarios and test on 1000 scenarios

Unit Commitment	Stochastic Programming	DRO 00000	Computational Experiments ○○●	Conclusion

Out-Of-Sample Costs over 1000 scenarios

Method	1	2	3	4	5
DRO	$1.88.10^{6}$	1.32.10 ⁶	$1.81.10^{6}$	$1.82.10^{6}$	$1.89.10^{6}$
SP	$1.90.10^{6}$	$1.33.10^{6}$	$1.83.10^{6}$	$1.83.10^{6}$	$1.92.10^{6}$
Gap	1.24%	1.02%	1.01%	0.72%	1.48%

Table: Average cost over 1000 scenarios

 \implies DRO leads to better decisions. But it requires slightly more time.

Unit Commitment	Stochastic Programming	DR0 00000	Computational Experiments	Conclusion ●0
Contents				

- 1 Unit Commitment
- 2 Stochastic Programming
- 3 Distributionnally Robust Optimization
- 4 Computational Experiments

Unit Commitment	Stochastic Programming	DRO 00000	Computational Experiments	Conclusion ○●
Conclusion				

- Many optimization problems involve uncertain parameters.
- Presentation of the classical method to deal with uncertainty (Stochastic Programming)
- DRO is an innovative approach, yet it comes with challenges
 ⇒ An ideal topic for a PhD.e