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Fundamental results for LPs

Primal:

min
x≥0

c⊤x =

Ax ≥ b

Dual formulation:

max
y≥0

b⊤y

A⊤y ≤ c

max
k∈[K ]

b⊤yk
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Mathis Azéma SP and DRO for Unit Commitment 03/04/25 2 / 19



Unit Commitment Stochastic Programming DRO Computational Experiments Conclusion

Fundamental results for LPs

Primal:

min
x≥0

c⊤x =

Ax ≥ b

Λ

Dual formulation:

max
y≥0

b⊤y

A⊤y ≤ c

max
k∈[K ]

b⊤yk
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Description

ï ï ï

What is the optimal production planning ?

 �  �  �
Figure: Unit Commitment

J : set of units

T : time horizon (T=24 for a day)

ξ ∈ RT : vector of demand
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Variables and Constraints

Variables:

yj ,t : Power generation of the unit j is on at time t.

xj ,t : Binary variable equal to 1 if the unit j is on at time t.

Example of Constraints:

Capacity constraints: Pmin
j xj ,t ≤ yj ,t ≤ Pmax

j xj ,t

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Pmin

Pmax

t

y

xt 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1
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Mathematical formulation

min
x ,y

c⊤x + b⊤y

s.t. Fx ≥ f

Ax + By ≥ g∑
j∈J

yj = ξ

But, in reality we have uncertainty in the demand, i.e. ξ is a
random variable !
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2-stage assumption

2-stage assumption:

1st stage: commitment variables x (binary)

2nd stage: production variables y (continuous)

The decisions x are taken without knowing the uncertainty ξ.
The decisions y are taken with full knowledge of the uncertainty ξ.

min
x ,y

c⊤x + b⊤y ξ

s.t. Fx ≥ f

Ax + By ξ ≥ g∑
j∈J

y ξj = ξ
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Mathis Azéma SP and DRO for Unit Commitment 03/04/25 6 / 19



Unit Commitment Stochastic Programming DRO Computational Experiments Conclusion

2-stage assumption

2-stage assumption:

1st stage: commitment variables x (binary)

2nd stage: production variables y (continuous)

The decisions x are taken without knowing the uncertainty ξ.
The decisions y are taken with full knowledge of the uncertainty ξ.

min
x

c⊤x + Q(x , ξ)

s.t. x ∈ X

Q(x , ξ): recourse value representing the optimal cost of the second
stage, (i.e. value of the optimal planning knowing which units are
on or off (x) and the demand (ξ))
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Primal and dual formulation of Q

By strong duality in linear programs, Q has a primal and a dual
formulation.

Primal formulation:

Q(x , ξ) = min
y

b⊤y

Ax + By ≥ d∑
j∈M

yj = ξ
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Mathis Azéma SP and DRO for Unit Commitment 03/04/25 7 / 19



Unit Commitment Stochastic Programming DRO Computational Experiments Conclusion

What is the best decision?

EDF wants to take the best decisions x (i.e., determine which units
are on tomorrow), we need a criteria !

min
x

c⊤x + Q(x , ξ)

s.t. x ∈ X

This problem is not well-posed, as ξ is a random variable!
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Mathis Azéma SP and DRO for Unit Commitment 03/04/25 8 / 19



Unit Commitment Stochastic Programming DRO Computational Experiments Conclusion

What is the best decision?

EDF wants to take the best decisions x (i.e., determine which units
are on tomorrow), we need a criteria !

min
x

c⊤x + Q(x , ξ)

s.t. x ∈ X

This problem is not well-posed, as ξ is a random variable!

min
x∈X

c⊤x + Eξ∼P[Q(x , ξ)]
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are on tomorrow), we need a criteria !

min
x

c⊤x + Q(x , ξ)

s.t. x ∈ X

This problem is not well-posed, as ξ is a random variable!

min
x∈X

c⊤x + Eξ∼P[Q(x , ξ)]

Problem: This problem is well-posed, but the law of uncertainty P
is unknown !
But we have empirical data (scenarios) ξs forming the empirical
law P0 !
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Risk neutral: Extensive formulation (Primal formulation)

min
x∈X

c⊤x + Eξ∼P[Q(x , ξ)]
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Risk neutral: Extensive formulation (Primal formulation)

min
x∈X

c⊤x + Eξ∼P[Q(x , ξ)]

We approximate P by P0

min
x∈X

c⊤x + Eξ∼P0 [Q(x , ξ)]
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x∈X

c⊤x + Eξ∼P0 [Q(x , ξ)]

We use the primal formulation of Q(x , ξ):

Q(x , ξ) = min
Ax+By≥g∑

j∈J yj=ξ

b⊤y

min
x∈X

c⊤x +
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S

∑
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Q(x , ξs)

Mathis Azéma SP and DRO for Unit Commitment 03/04/25 9 / 19



Unit Commitment Stochastic Programming DRO Computational Experiments Conclusion

Risk neutral: Extensive formulation (Primal formulation)

min
x∈X

c⊤x + Eξ∼P0 [Q(x , ξ)]

We use the primal formulation of Q(x , ξ):

Q(x , ξ) = min
Ax+By≥g∑

j∈J yj=ξ

b⊤y

min
x∈X

c⊤x +
1

S

∑
s∈S

min
Ax+By s≥g∑

j∈J y s
j =ξs

b⊤y s
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s.t. x ∈ X ,

Ax + By s ≥ g ∀s ∈ S∑
j∈J

y sj = ξs ∀s ∈ S

=⇒ We have a single
(very) large problem to
solve.
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Benders’ Decomposition (Dual Formulation)

min
x∈X

c⊤x + Eξ∼P0 [Q(x , ξ)]

We use the dual formulation of Q(x , ξ):

Q(x , ξ) = max
k∈[K ]

α⊤
k x + β⊤

k ξ + γk
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Benders’ Decomposition (Dual Formulation)

min
x∈X

c⊤x + Eξ∼P0 [Q(x , ξ)]

We use the dual formulation of Q(x , ξ):

Q(x , ξ) = max
k∈[K ]

α⊤
k x + β⊤

k ξ + γk

min
z,x∈X

c⊤x +
1

S

∑
s∈S

zs

zs ≥ α⊤
k ξ

s + β⊤
k x + γk ∀k ∈ [K ]

=⇒ Problem: the extreme points (αk , βk , γk) are both unknown
and numerous.
=⇒ Cut generating algorithm.
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Benders’ Decomposition

Master Problem:

min
x ,z

c⊤x +
1

S

∑
s∈S

zs

s.t. x ∈ X ,

zs ≥ (αs
ℓ)

⊤ξs + (βs
ℓ )

⊤x + (γsℓ ), ∀ℓ ≤ k

Subproblem for each scenario s:

max
α,β,γ

α⊤ξs + β⊤x∗ + γ

s.t. (α, β, γ) ∈ Λ

(αs
k+1, β

s
k+1, γ

s
k+1)

= (α∗, β∗, γ∗)
x∗

Convergence iff

z∗s ≥ (α∗)⊤ξs + (β∗)⊤x∗ + γ∗
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Drawbacks

min
x∈X

c⊤x + Eξ∼P[Q(x , ξ)]

Overfitting to the training scenarios. What does it mean?

Training phase
We solve by one of the previous
algorithms with P0 = 50
scenarios:

min
x∈X

c⊤x + Eξ∼P0 [Q(x , ξ)]

Let x0 be the optimal solution.

Test phase
Let P̂0 another empirical
distribution with 1000 scenarios
(= very close to P)

min
x∈X

c⊤x + Eξ∼P̂0
[Q(x , ξ)]

x = x0

Overfitting: x0 performs well on the training data P0 but
generalizes poorly to the test data P̂0.
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Introduction

min
x∈X

c⊤x + Eξ∼P[Q(x , ξ)]

SP problem:

min
x∈X

c⊤x + Eξ∼P0 [Q(x , ξ)]

DRO problem:

min
x∈X

c⊤x +max
Q∈P

Eξ∼Q[Q(x , ξ)]

If P = {P0}, the DRO problem is the SP problem.

If P is sufficiently large, it includes P, but an excessively large
P leads to poor decisions.

=⇒ How can we select P to be better than SP?
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If P = {P0}, the DRO problem is the SP problem.

If P is sufficiently large, it includes P, but an excessively large
P leads to poor decisions.

=⇒ How can we select P to be better than SP?
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Choice of P

min
x∈X

c⊤x +max
Q∈P

Eξ∼Q[Q(x , ξ)]

Wasserstein distance W2(Q,P) is a distance between the
distributions Q and P

P = {Q |W2(Q,P) ≤ θ}
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DRO Unit Commitment problem

P = {Q |W2(Q,P0) ≤ θ} , P0 =
1

N

∑
i∈[N]

δζi
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DRO Unit Commitment problem

P = {Q |W2(Q,P0) ≤ θ} , P0 =
1

N

∑
i∈[N]

δζi

Reformulation DRO Unit Commitment problem1:

min
x

c⊤x + max
Q:W2(Q,P0)≤θ [λ]

supp(Q)⊂RT

EQ[Q(x , ξ)]

s.t. x ∈ X

1Gao and Kleywegt 2016.
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DRO Unit Commitment problem

P = {Q |W2(Q,P0) ≤ θ} , P0 =
1

N

∑
i∈[N]

δζi

Reformulation DRO Unit Commitment problem1:

min
x,λ≥0

c⊤x + λθ2 +
1

N

N∑
i=1

sup
ξ∈RT

(
Q(x , ξ)− λ∥ξ − ζi∥22

)
s.t. x ∈ X

1Gao and Kleywegt 2016.
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DRO Unit Commitment problem

P = {Q |W2(Q,P0) ≤ θ} , P0 =
1

N

∑
i∈[N]

δζi

Reformulation DRO Unit Commitment problem1:

min
x,λ≥0

c⊤x + λθ2 +
1

N

N∑
i=1

max
ξ∈RT ,k∈[K ]

(
α⊤
k ξ + β⊤

k x + γk−λ∥ξ − ζi∥2
)

s.t. x ∈ X
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DRO Unit Commitment problem

P = {Q |W2(Q,P0) ≤ θ} , P0 =
1

N

∑
i∈[N]

δζi

Reformulation DRO Unit Commitment problem1:

min
x,λ≥0

c⊤x + λθ2 +
1

N

N∑
i=1

max
k∈[K ]

(
β⊤
k x + γk + max

ξ∈RT
(α⊤

k ξ−λ∥ξ − ζi∥2)
)

s.t. x ∈ X
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DRO Unit Commitment problem

P = {Q |W2(Q,P0) ≤ θ} , P0 =
1

N

∑
i∈[N]

δζi

Reformulation DRO Unit Commitment problem1:

min
x,λ≥0

c⊤x + λθ2 +
1

N

N∑
i=1

max
k∈[K ]

(
β⊤
k x + γk + α⊤

k ζi +
∥αk∥22
4λ

)
s.t. x ∈ X
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DRO Unit Commitment problem

P = {Q |W2(Q,P0) ≤ θ} , P0 =
1

N

∑
i∈[N]

δζi

Reformulation DRO Unit Commitment problem1:

min
x,λ≥0,z≥0,w≥0

c⊤x + wθ2 +
1

N

N∑
i=1

zi

s.t. x ∈ X

∥(2,w − λ)∥2 ≤ w + λ

zi ≥
(
α⊤
k ζi + β⊤

k x + γk +
λ∥αk∥22

4

)
∀k ∈ [K ]
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DRO Unit Commitment problem

P = {Q |W2(Q,P0) ≤ θ} , P0 =
1

N

∑
i∈[N]

δζi

Reformulation DRO Unit Commitment problem1:

min
x,λ≥0,z≥0,w≥0

c⊤x + wθ2 +
1

N

N∑
i=1

zi

s.t. x ∈ X

∥(2,w − λ)∥2 ≤ w + λ

zi ≥
(
α⊤
k ζi + β⊤

k x + γk +
λ∥αk∥22

4

)
∀k ∈ [K ]

=⇒ Benders’ algorithm
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Benders algorithm DRO

Master Problem:

min
x,w ,λ,z

c⊤x + wθ2 +
1

N

N∑
i=1

zi

s.t. x ∈ X
∥(2,w − λ)∥2 ≤ w + λ

z i ≥ (αi
ℓ)

⊤ζ i + (βi
ℓ)

⊤x + γ i
ℓ +

λ∥αi
ℓ∥2

2

4
, ∀ℓ ≤ k, ∀i ∈ [N]

θ ∈ R, xi ∈ {0, 1}mi×T

Subproblem for each scenario i :

max
α,β,γ

α⊤ζi + β⊤x∗ + γ +
λ∗∥α∥22

4
s.t. (α, β, γ) ∈ Λ

(α∗, β∗, γ∗)(x∗, λ∗)
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Benders algorithm DRO

Master Problem:

min
x,w ,λ,z

c⊤x + wθ2 +
1

N

N∑
i=1

zi

s.t. x ∈ X
∥(2,w − λ)∥2 ≤ w + λ

z i ≥ (αi
ℓ)

⊤ζ i + (βi
ℓ)

⊤x + γ i
ℓ +

λ∥αi
ℓ∥2

2

4
, ∀ℓ ≤ k, ∀i ∈ [N]

θ ∈ R, xi ∈ {0, 1}mi×T

Subproblem for each scenario i :

max
α,β,γ

α⊤ζi + β⊤x∗ + γ +
λ∗∥α∥22

4
s.t. (α, β, γ) ∈ Λ

Convex maximization
problem (NP-Hard)

(α∗, β∗, γ∗)(x∗, λ∗)

Mathis Azéma SP and DRO for Unit Commitment 03/04/25 16 / 19



Unit Commitment Stochastic Programming DRO Computational Experiments Conclusion

Contents

1 Unit Commitment

2 Stochastic Programming

3 Distributionnally Robust Optimization

4 Computational Experiments

5 Conclusion
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Presentation

Source: SMS++/ EDF.

5 instances with 10 units and 24 time steps.

Source scenarios: https:
//data.open-power-system-data.org/time_series/

Training on 25 scenarios and test on 1000 scenarios
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Out-Of-Sample Costs over 1000 scenarios

Method 1 2 3 4 5
DRO 1.88 .106 1.32 .106 1.81 .106 1.82 .106 1.89 .106

SP 1.90 .106 1.33 .106 1.83 .106 1.83 .106 1.92 .106

Gap 1.24% 1.02% 1.01% 0.72% 1.48%

Table: Average cost over 1000 scenarios

=⇒ DRO leads to better decisions. But it requires slightly more
time.
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Conclusion

Many optimization problems involve uncertain parameters.

Presentation of the classical method to deal with uncertainty
(Stochastic Programming)

DRO is an innovative approach, yet it comes with challenges
=⇒ An ideal topic for a PhD.

Mathis Azéma SP and DRO for Unit Commitment 03/04/25 19 / 19


	Unit Commitment
	Stochastic Programming
	Distributionnally Robust Optimization
	Computational Experiments
	Conclusion

