Traditional Methods

Computational Experiments

Conclusion

Comparison between Robust Optimization, Stochastic Programming and Distributionally Robust Optimization for Unit Commitment

Mathis Azéma (CERMICS)

Supervisors: Vincent Leclère, Wim Van Ackooij (EDF R&D)

PGMO Days

November 19th, 2024

École nationale des ponts et chaussées

RO, SP and DRO for Unit Commitment

19/11/24 1 / 24

RØD

Contents

2 Traditional Methods

- Robust Optimization
- Stochastic Programming
- Oistributionnally Robust Optimization
 - Introduction
 - Divergence
 - Wasserstein distance
- 4 Computational Experiments

5 Conclusion

Contents

Unit Commitment

Traditional Methods

- Robust Optimization
- Stochastic Programming
- 3 Distributionnally Robust Optimization
 - Introduction
 - Divergence
 - Wasserstein distance
- 4 Computational Experiments

5 Conclusion

Deterministic UC Problem

- \mathcal{M} : set of units
- T: time horizon
- $d \in \mathbb{R}^T$: demand vector
- x_i: commitment variables (binary).
- *y_i*: production variables (continuous).

$$\begin{split} \min_{x_i, y_i} & \sum_{i \in \mathcal{M}} c_i^\top x_i + \sum_{i \in \mathcal{M}} b_i^\top y_i \\ s.t. & F_i x_i \geq f_i & \forall i \in \mathcal{M} \\ & H_i y_i \geq h_i & \forall i \in \mathcal{M} \\ & A_i x_i + B_i y_i \geq g_i & \forall i \in \mathcal{M} \\ & \sum_{i \in \mathcal{M}} y_i = d \\ & x_i \in \{0, 1\}^{m_i \times T}, \quad y_i \in \mathbb{R}_+^T \end{split}$$

Assumptions

• Uncertainty on the demand.

- 2-stage assumption:
 - 1st stage: commitment variables (binary)
 - 2nd stage: production variables (continuous)

$$\min_{x_i, y_i} \quad c^\top x + b^\top y \\ s.t. \quad x \in X \\ y_i \in Y_i(x_i) \quad \forall i \in \mathcal{M} \\ \sum_{i \in \mathcal{M}} y_i = \boxed{d}?$$

Jnit Commitment	Traditional Methods	DRO 00000000000000	Computational Experiments	Conclusion 00

Assumptions

- Uncertainty on the demand.
- 2-stage assumption:
 - 1st stage: commitment variables (binary)
 - 2nd stage: production variables (continuous)

$$egin{aligned} \min_{x_i,y_i} & c^ op x + b^ op y \ s.t. & x \in X \ & y_i \in Y_i(x_i) & orall i \in \mathcal{M} \ & \sum_{i\in\mathcal{M}} y_i = d \end{aligned}$$

Jnit Commitment	Traditional Methods	DRO 000000000000000	Computational Experiments	Conclusion 00

Assumptions

- Uncertainty on the demand.
- 2-stage assumption:
 - 1st stage: commitment variables (binary)
 - 2nd stage: production variables (continuous)

$$\min_{x_i} \quad c^\top x + \min_{\substack{y_i: y_i \in Y_i(x_i) \\ \sum_{i \in \mathcal{M}} y_i = d}} b^\top y$$

s.t. $x \in X$

- Uncertainty on the demand.
- 2-stage assumption:
 - 1st stage: commitment variables (binary)
 - 2nd stage: production variables (continuous)

 $\min_{x_i} \quad c^\top x + Q(x, d) \\ s.t. \quad x \in X$

Q(x, d): recourse function representing the optimal cost of the second stage, considering which units are on or off (first stage) and the demand d

$$Q(x, d) = \min_{y} \quad b^{\top}y \qquad = \max_{\alpha, \beta, \gamma} \alpha^{\top}d + \beta^{\top}x + \gamma$$
$$y_{i} \in Y_{i}(x_{i}) \qquad (\alpha, \beta, \gamma) \in \Lambda$$
$$\sum_{i \in \mathcal{M}} y_{i} = d$$

Contents

Unit Commitment

2 Traditional Methods

- Robust Optimization
- Stochastic Programming
- 3 Distributionnally Robust Optimization
 - Introduction
 - Divergence
 - Wasserstein distance
- 4 Computational Experiments

5 Conclusion

Contents

Unit Commitment

2 Traditional Methods

- Robust Optimization
- Stochastic Programming
- 3 Distributionnally Robust Optimization
 - Introduction
 - Divergence
 - Wasserstein distance
- 4 Computational Experiments

5 Conclusion

Unit Commitment	Traditional Methods	DRO 000000000000000	Computational Experiments	Conclusion 00
Principle				

Robust problem: minimize the worst-case

$$\begin{array}{ll} \min_{x} & c^{\top}x + \max_{d \in \mathcal{D}} Q(x, d) \\ s.t. & x_{i} \in X_{i} & \forall i \in \mathcal{M} \\ & x_{i} \in \{0, 1\}^{m_{i} \times T} \end{array}$$

Budget Uncertainty Set:

$$\mathcal{D} = \left\{ d = (d_t)_{t \in [\mathcal{T}]} \mid d_t = \hat{d}_t + \gamma_t \Delta_t \quad \sum |\gamma_t| \leq \Gamma \quad \gamma_t \in [-1, 1]
ight\}$$

 \implies Objective: Find a tractable reformulation to solve the min-max-min problem

Unit Commitment	Traditional Methods	DRO 000000000000000	Computational Experiments	Conclusion
Principle				

Robust problem: minimize the worst-case

$$\begin{array}{ll} \min_{x} & c^{\top}x + \max_{d \in \mathcal{D}} Q(x, d) \\ s.t. & x_i \in X_i & \forall i \in \mathcal{M} \\ & x_i \in \{0, 1\}^{m_i \times T} \end{array}$$

Budget Uncertainty Set:

$$\mathcal{D} = \left\{ m{d} = (m{d}_t)_{t \in [\mathcal{T}]} \hspace{0.1 in} | \hspace{0.1 in} m{d}_t = \hat{m{d}}_t + \gamma_t \Delta_t \hspace{0.1 in} \sum |\gamma_t| \leq \mathsf{\Gamma} \hspace{0.1 in} \gamma_t \in [-1,1]
ight\}$$

 \implies Objective: Find a tractable reformulation to solve the min-max-min problem

Unit Commitment	Traditional Methods	DRO 000000000000000	Computational Experiments	Conclusion
Principle				

Robust problem: minimize the worst-case

$$\begin{array}{ll} \min_{x} & c^{\top}x + \max_{d \in \mathcal{D}} Q(x, d) \\ s.t. & x_i \in X_i & \forall i \in \mathcal{M} \\ & x_i \in \{0, 1\}^{m_i \times T} \end{array}$$

Budget Uncertainty Set:

$$\mathcal{D} = \left\{ m{d} = (m{d}_t)_{t \in [\mathcal{T}]} \hspace{0.1 in} | \hspace{0.1 in} m{d}_t = \hat{m{d}}_t + \gamma_t \Delta_t \hspace{0.1 in} \sum |\gamma_t| \leq \mathsf{\Gamma} \hspace{0.1 in} \gamma_t \in [-1,1]
ight\}$$

 \implies Objective: Find a tractable reformulation to solve the min-max-min problem

Computational Experiment

Steps for reformulating $\max_{d \in D} Q(x, d)$

If Γ is an integer, then:

$$\begin{aligned} \max_{d \in \mathcal{D}} Q(x, d) &= \max_{d \in ext(\mathcal{D})} Q(x, d) \\ ext(\mathcal{D}) &= \left\{ d = (d_t)_{t \in [T]} \, | \, d_t = \bar{d}_t + \gamma_t \Delta_t \quad \sum |\gamma_t| \leq \Gamma \quad \gamma_t \in \{-1, 0, 1\} \right\} \end{aligned}$$
Observe the second function:

$$Q(x,d) = \max \left(lpha^ op d + eta^ op x + \gamma \quad s.t. \quad (lpha,eta,\gamma) \in \Lambda
ight)$$

Transform the bilinear worst-case problem into a MILP:

$$\max_{d \in \mathcal{D}} Q(x, d) = \max_{d \in ext(\mathcal{D}), (\alpha, \beta, \gamma) \in \Lambda} \alpha^{\top} d + \beta^{\top} x + \gamma$$

<u>Contribution</u>: Adaptation of the method developed by Billionnet et al. [2016]¹ which assumes $\alpha \ge 0$ (stemming from $\sum y_i \ge d$ instead of $\sum y_i = d$)

¹Billionnet, Costa, and Poirion 2016.

Computational Experiments

Steps for reformulating $\max_{d \in D} Q(x, d)$

If Γ is an integer, then:

$$\max_{d \in \mathcal{D}} Q(x, d) = \max_{d \in ext(\mathcal{D})} Q(x, d)$$
$$ext(\mathcal{D}) = \left\{ d = (d_t)_{t \in [T]} | d_t = \bar{d}_t + \gamma_t \Delta_t \quad \sum |\gamma_t| \le \Gamma \quad \gamma_t \in \{-1, 0, 1\} \right\}$$
Dualize the recourse function:

$$Q(x,d) = \max \left(lpha^ op d + eta^ op x + \gamma \quad s.t. \quad (lpha,eta,\gamma) \in \Lambda
ight)$$

Transform the bilinear worst-case problem into a MILP:

$$\max_{d \in \mathcal{D}} Q(x, d) = \max_{d \in ext(\mathcal{D}), (\alpha, \beta, \gamma) \in \Lambda} \alpha^{\top} d + \beta^{\top} x + \gamma$$

<u>Contribution</u>: Adaptation of the method developed by Billionnet et al. [2016]¹ which assumes $\alpha \ge 0$ (stemming from $\sum y_i \ge d$ instead of $\sum y_i = d$)

¹Billionnet, Costa, and Poirion 2016.

Computational Experiments

Steps for reformulating $\max_{d \in D} Q(x, d)$

If Γ is an integer, then:

$$\max_{d \in \mathcal{D}} Q(x, d) = \max_{d \in ext(\mathcal{D})} Q(x, d)$$
$$ext(\mathcal{D}) = \left\{ d = (d_t)_{t \in [T]} \mid d_t = \bar{d}_t + \gamma_t \Delta_t \quad \sum |\gamma_t| \le \Gamma \quad \gamma_t \in \{-1, 0, 1\} \right\}$$

② Dualize the recourse function:

$$Q(x,d) = \max \left(lpha^ op d + eta^ op x + \gamma \quad s.t. \quad (lpha,eta,\gamma) \in \Lambda
ight)$$

Transform the bilinear worst-case problem into a MILP:

$$\max_{d \in \mathcal{D}} Q(x, d) = \max_{d \in ext(\mathcal{D}), (\alpha, \beta, \gamma) \in \Lambda} \alpha^{\top} d + \beta^{\top} x + \gamma$$

<u>Contribution</u>: Adaptation of the method developed by Billionnet et al. [2016]¹ which assumes $\alpha \ge 0$ (stemming from $\sum y_i \ge d$ instead of $\sum y_i = d$)

¹Billionnet, Costa, and Poirion 2016.

Traditional Methods

Computational Experiment

Conclusion

Benders Algorithm

Initial Robust Problem:

$$egin{aligned} \min_{\substack{x, heta \ x, heta \ x_i \in X_i}} & c^ op x + heta \ s.t. & x_i \in X_i & orall i \in \mathcal{M} \ & heta \geq \max_{d \in \mathcal{D}} Q(x,d) \ & x_i \in \{0,1\}^{m_i imes T} \end{aligned}$$

Traditional Methods

Computational Experiment

Conclusion

Benders Algorithm

If Γ is an integer, then:

$$\max_{d\in\mathcal{D}}Q(x,d)=\max_{d\in ext(\mathcal{D})}Q(x,d)$$

$$egin{aligned} \min_{egin{aligned} x, heta \ x, heta \ \end{array}} & c^ op x + heta \ s.t. & x_i \in X_i & orall i \in \mathcal{M} \ & heta \geq Q(x, d) & orall d \in ext(\mathcal{D}) \ & x_i \in \{0, 1\}^{m_i imes T} \end{aligned}$$

Traditional Methods

Computational Experiments

Conclusion

Benders Algorithm

Dualize the recourse function:

$$Q(x,d) = \max \left(\alpha^{\top} d + \beta^{\top} x + \gamma \quad s.t. \quad (\alpha, \beta, \gamma) \in \Lambda \right)$$

$$\begin{array}{ll} \min_{x,\theta} & c^{\top}x + \theta \\ s.t. & x_i \in X_i & \forall i \in \mathcal{M} \\ & \theta \geq \max\left(\alpha^{\top}d + \beta^{\top}x + \gamma \quad s.t. \quad (\alpha,\beta,\gamma) \in \Lambda\right) & \forall d \in ext(\mathcal{D}) \\ & x_i \in \{0,1\}^{m_i \times T} \end{array}$$

Traditional Methods

Computational Experiment

Conclusion

Benders Algorithm

Decomposition over the extreme points $(\alpha_k, \beta_k, \gamma_k)$ of the dual polytope Λ :

$$\begin{split} \min_{\substack{x,\theta \\ x,\theta}} & c^\top x + \theta \\ s.t. & x_i \in X_i & \forall i \in \mathcal{M} \\ & \theta \geq \max_{k \in [\mathcal{K}]} \left(\alpha_k^\top d + \beta_k^\top x + \gamma_k \right) & \forall d \in ext(\mathcal{D}) \\ & x_i \in \{0,1\}^{m_i \times T} \end{split}$$

Traditional Methods

Computational Experiments

Conclusion

Benders Algorithm

Linearization:

$$\begin{split} \min_{\substack{x,\theta \\ x,\theta}} & c^{\top}x + \theta \\ s.t. & x_i \in X_i & \forall i \in \mathcal{M} \\ & \theta \ge \left(\alpha_k^{\top}d + \beta_k^{\top}x + \gamma_k\right) & \forall d \in ext(\mathcal{D}) \, \forall k \in [K] \\ & x_i \in \{0,1\}^{m_i \times T} \end{split}$$

Traditional Methods

Computational Experiments

Conclusion

Benders Algorithm

Unit Commitment Traditional Methods DRO Computational Experiments Conclusio

CCG Algorithm

Initial Robust Problem:

$$egin{aligned} \min_{x, heta} & c^ op x + heta \ s.t. & x_i \in X_i & orall i \in \mathcal{M} \ & heta \geq \max_{d \in \mathcal{D}} Q(x,d) \ & x_i \in \{0,1\}^{m_i imes T} \end{aligned}$$

 Unit Commitment
 Traditional Methods
 DRO
 Computational Experiments
 Conclusion

 CCCG Algorithm
 CCCG Algorithm
 CCCG Algorithm
 CCCC
 CCCC
 CCCC
 CCCC

If Γ is an integer, then:

$$\max_{d\in\mathcal{D}}Q(x,d)=\max_{d\in ext(\mathcal{D})}Q(x,d)$$

$$egin{aligned} \min_{\substack{x, heta \ x, heta \ x_i \in X_i}} & c^ op x + heta \ s.t. & x_i \in X_i & orall i \in \mathcal{M} \ heta \geq Q(x,d) & orall d \in ext(\mathcal{D}) \ x_i \in \{0,1\}^{m_i imes T} \end{aligned}$$

Traditional Methods

Computational Experiment

Conclusion

CCG Algorithm

Primal form of the recourse function:

$$egin{aligned} Q(x,d) &= \min_{y} \quad b^{ op} y \ y_i \in Y_i(x_i) & orall i \in \mathcal{M} \ \sum_{i \in \mathcal{M}} y_i &= d \end{aligned}$$

$$egin{aligned} \min_{egin{aligned} x, heta \ x, heta \end{aligned}} & c^ op x + heta \ s.t. & x_i \in X_i & \forall i \in \mathcal{M} \ heta \geq \min_{\substack{y_i^d \in Y_i(x_i) \ \sum_{i \in \mathcal{M}} y_i^d = d \ x_i \in \{0, 1\}^{m_i imes T}}} & \forall d \in ext(\mathcal{D}) \end{aligned}$$

Traditional Methods

Computational Experiments

Conclusion

CCG Algorithm

$$\begin{array}{ll} \min_{x,y} & c^{\top}x + \theta \\ s.t. & x_i \in X_i & \forall i \in \mathcal{M} \\ & \theta \geq b^{\top}y^d & \forall d \in ext(\mathcal{D}) \\ & y_i^d \in Y_i(x_i) & \forall d \in ext(\mathcal{D}), \, \forall i \in \mathcal{M} \\ & \displaystyle \sum_{i \in \mathcal{M}} y_i^d = d & \forall d \in ext(\mathcal{D}) \\ & x_i \in \{0,1\}^{m_i \times T} \end{array}$$

Traditional Methods

Computational Experiments

Conclusion

CCG Algorithm

Contents

Unit Commitment

2 Traditional Methods

- Robust Optimization
- Stochastic Programming
- 3 Distributionnally Robust Optimization
 - Introduction
 - Divergence
 - Wasserstein distance
- 4 Computational Experiments

5 Conclusion

Traditional Methods

Computational Experiments

Conclusion

Different Risk Measures

Risk neutral: $\mathbb{E}[X]$

 $egin{array}{lll} \min \ c^ op x + \mathbb{E}[Q(x,d)] \ s.t. \ x_i \in X_i, \quad orall i \in \mathcal{M} \end{array}$

Risk Averse (TVAR): $\mathbb{E}[X|X \ge VaR_{\alpha}(X)]$

min
$$c^{\top}x + z + \frac{1}{1 - \alpha} \mathbb{E}[max(Q(x, d) - z, 0)]$$

s.t. $x_i \in X_i, \quad \forall i \in \mathcal{M}$

MTVaR: $\beta \mathbb{E}[X] + (1 - \beta) \mathbb{E}[X|X \ge VaR_{\alpha}(X)]$

min $c^{\top}x + \beta \mathbb{E}[Q(x,d)] + (1-\beta)z + \frac{1-\beta}{1-\alpha} \mathbb{E}[max(Q(x,d)-z,0)]$ s.t. $x_i \in X_i, \quad \forall i \in \mathcal{M}$

Traditional Methods

Computational Experiments

Conclusion

Different Risk Measures

Risk neutral: $\mathbb{E}[X]$

 $egin{array}{lll} \min \ c^ op x + \mathbb{E}[Q(x,d)] \ s.t. \ x_i \in X_i, \quad orall i \in \mathcal{M} \end{array}$

Risk Averse (TVAR): $\mathbb{E}[X|X \ge VaR_{\alpha}(X)]$

$$\min c^{\top} x + z + \frac{1}{1 - \alpha} \mathbb{E}[\max(Q(x, d) - z, 0)]$$

s.t. $x_i \in X_i, \quad \forall i \in \mathcal{M}$

MTVaR: $\beta \mathbb{E}[X] + (1 - \beta) \mathbb{E}[X|X \ge VaR_{\alpha}(X)]$

min $c^{\top}x + \beta \mathbb{E}[Q(x,d)] + (1-\beta)z + \frac{1-\beta}{1-\alpha} \mathbb{E}[max(Q(x,d)-z,0)]$ s.t. $x_i \in X_i, \quad \forall i \in \mathcal{M}$

Traditional Methods

Computational Experiments

Conclusion

Different Risk Measures

Risk neutral: $\mathbb{E}[X]$

 $egin{array}{lll} \mathsf{min} \,\,\, c^ op x + \mathbb{E}[Q(x,d)] \ s.t. \,\,\, x_i \in X_i, \,\,\, orall i \in \mathcal{M} \end{array}$

Risk Averse (TVAR): $\mathbb{E}[X|X \ge VaR_{\alpha}(X)]$

min
$$c^{\top}x + z + \frac{1}{1-\alpha}\mathbb{E}[max(Q(x, d) - z, 0)]$$

s.t. $x_i \in X_i, \quad \forall i \in \mathcal{M}$

 $\mathbf{MTVaR}: \beta \mathbb{E}[X] + (1 - \beta) \mathbb{E}[X|X \ge VaR_{\alpha}(X)]$

 $\min c^{\top} x + \beta \mathbb{E}[Q(x,d)] + (1-\beta)z + \frac{1-\beta}{1-\alpha} \mathbb{E}[\max(Q(x,d)-z,0)]$ s.t. $x_i \in X_i, \quad \forall i \in \mathcal{M}$

Unit Commitment	Traditional Methods ○○○○○○○○●○	DRO 000000000000000	Computational Experiments	Conclusion 00
Algorithms				

Extensive formulation:

 $\min c^{\top} x + \mathbb{E}[Q(x, d)] \\ s.t. \quad x_i \in X_i, \quad \forall i \in \mathcal{M}$

Unit	Commitment
000	

Traditional Methods

Computational Experiment

Conclusion

Algorithms

Extensive formulation:

$$\min c^{\top} x + \sum_{s \in S} \pi_s Q(x, d^s)$$

s.t. $x_i \in X_i, \quad \forall i \in \mathcal{M}$

Unit Commitment	Traditional Methods ○○○○○○○○●○	DRO 0000000000000000	Computational Experiments

Algorithms

Extensive formulation:

$$\min c^{\top} x + \sum_{s \in S} \pi_s \min_{\substack{y_i^s \in Y_i(x_i) \\ \sum_{i \in \mathcal{M}} y_i^s = d^s}} b^{\top} y^s$$

$$s.t. \quad x_i \in X_i, \quad \forall i \in \mathcal{M}$$

Commitment	Tra
	00

raditional Methods

Computational Experiment

Conclusion

Algorithms

Extensive formulation:

$$\begin{array}{ll} \min \quad c^{\top}x + \sum_{s \in \mathcal{S}} \pi_s b^{\top} y^s \\ s.t. \quad x_i \in X_i, \quad \forall i \in \mathcal{M} \\ y_i^s \in Y_i(x_i), \quad \forall i \in \mathcal{M}, \, \forall s \in \mathcal{S} \\ \sum_{i \in \mathcal{M}} y_i^s = d^s, \quad \forall s \in \mathcal{S} \end{array}$$

Unit Commitment	Traditional Methods	DRO	Computational Experiments	Conclusion
000	○○○○○○○○●	000000000000000		00
Algorithms				

L-shaped (Benders):

Contents

Unit Commitment

2 Traditional Methods

- Robust Optimization
- Stochastic Programming

Oistributionnally Robust Optimization

- Introduction
- Divergence
- Wasserstein distance
- 4 Computational Experiments

5 Conclusion

Contents

Unit Commitment

2 Traditional Methods

- Robust Optimization
- Stochastic Programming

Distributionnally Robust Optimization Introduction

- Divergence
- Wasserstein distance
- 4 Computational Experiments

5 Conclusion

000	0000000000	000000000000000000000000000000000000000		00		
Introduction						

$$\min_{x} \quad c^{\top}x + \max_{\mathbb{Q} \in \mathcal{P}} \mathbb{E}_{\xi \sim \mathbb{Q}}[Q(x,\xi)]$$

s.t. $x_i \in X_i, \quad \forall i \in \mathcal{M}$

- If $\mathcal{P} = \{\mathbb{P}_0\}$, then the DRO problem is equal to the risk-neutral one.
- If *P* includes all distributions supported on *U*, then the DRO problem is equivalent to the robust optimization (RO) problem with *U* as the uncertainty set.

000	000000000	000000000000000000000000000000000000000	00000	00
Introductio	on			

$$\min_{x} \quad c^{\top}x + \max_{\mathbb{Q}\in\mathcal{P}} \mathbb{E}_{\xi\sim\mathbb{Q}}[Q(x,\xi)]$$

s.t. $x_i \in X_i, \quad \forall i \in \mathcal{M}$

- If $\mathcal{P} = \{\mathbb{P}_0\}$, then the DRO problem is equal to the risk-neutral one.
- If \mathcal{P} includes all distributions supported on \mathcal{U} , then the DRO problem is equivalent to the robust optimization (RO) problem with \mathcal{U} as the uncertainty set.

Unit Commitment	Traditional Methods	DRO	Computational Experiments	Conclusion
	0000000000	○○●○○○○○○○○○○	00000	00
Introductio	n			

$$\min_{x} \quad c^{\top}x + \max_{\mathbb{Q} \in \mathcal{P}} \mathbb{E}_{\xi \sim \mathbb{Q}}[Q(x,\xi)]$$

s.t. $x_i \in X_i, \quad \forall i \in \mathcal{M}$

- If $\mathcal{P} = \{\mathbb{P}_0\}$, then the DRO problem is equal to the risk-neutral one.
- If *P* includes all distributions supported on *U*, then the DRO problem is equivalent to the robust optimization (RO) problem with *U* as the uncertainty set.

Unit Commitment	Traditional Methods	DRO	Computational Experiments	Conclusion
	0000000000	○○●○○○○○○○○○○	00000	00
Introductio	n			

$$\min_{x} \quad c^{\top}x + \max_{\mathbb{Q}\in\mathcal{P}} \mathbb{E}_{\xi\sim\mathbb{Q}}[Q(x,\xi)]$$

s.t. $x_i \in X_i, \quad \forall i \in \mathcal{M}$

- If $\mathcal{P} = \{\mathbb{P}_0\}$, then the DRO problem is equal to the risk-neutral one.
- If \mathcal{P} includes all distributions supported on \mathcal{U} , then the DRO problem is equivalent to the robust optimization (RO) problem with \mathcal{U} as the uncertainty set.

Idea: \mathcal{P} has to include distributions "close" to the empirical one.

Moments-based ambiguity sets

$$\mathcal{P} = \{\mathbb{Q} \, | \, |\mathbb{E}[\mathbb{Q}] - \mathbb{E}[\mathbb{P}_0]| \le \theta\}$$

• ϕ -divergence-based ambiguity sets

$$\mathcal{P} = \{\mathbb{Q} \,|\, D_{\phi}(\mathbb{Q}, \mathbb{P}_0) \leq \theta\}$$

Problem: $D_{\phi}(\mathbb{Q}, \mathbb{P}_0) = \mathbb{E}_{\mathbb{P}}\left[\phi\left(\frac{d\mathbb{Q}}{d\mathbb{P}_0}\right)\right]$ is not a metric and only considers distributions with the same support as \mathbb{P}_0 .

• Wasserstein distance-based ambiguity sets

$$\mathcal{P} = \{\mathbb{Q} \in \mathcal{P}(\mathcal{U}) \mid W_{p}(\mathbb{Q}, \mathbb{P}_{0}) \leq \theta\}$$

Idea: \mathcal{P} has to include distributions "close" to the empirical one.

• Moments-based ambiguity sets

$$\mathcal{P} = \{\mathbb{Q} \, | \, |\mathbb{E}[\mathbb{Q}] - \mathbb{E}[\mathbb{P}_0]| \le \theta\}$$

• ϕ -divergence-based ambiguity sets

$$\mathcal{P} = \{\mathbb{Q} \,|\, D_{\phi}(\mathbb{Q}, \mathbb{P}_0) \leq \theta\}$$

Problem: $D_{\phi}(\mathbb{Q}, \mathbb{P}_0) = \mathbb{E}_{\mathbb{P}}\left[\phi\left(\frac{d\mathbb{Q}}{d\mathbb{P}_0}\right)\right]$ is not a metric and only considers distributions with the same support as \mathbb{P}_0 .

Wasserstein distance-based ambiguity sets

$$\mathcal{P} = \{ \mathbb{Q} \in \mathcal{P}(\mathcal{U}) \mid W_p(\mathbb{Q}, \mathbb{P}_0) \le \theta \}$$

Idea: $\ensuremath{\mathcal{P}}$ has to include distributions "close" to the empirical one.

• Moments-based ambiguity sets

$$\mathcal{P} = \{\mathbb{Q} \, | \, |\mathbb{E}[\mathbb{Q}] - \mathbb{E}[\mathbb{P}_0]| \le \theta\}$$

• ϕ -divergence-based ambiguity sets

$$\mathcal{P} = \{\mathbb{Q} \mid D_{\phi}(\mathbb{Q}, \mathbb{P}_0) \leq \theta\}$$

Problem: $D_{\phi}(\mathbb{Q}, \mathbb{P}_0) = \mathbb{E}_{\mathbb{P}}\left[\phi\left(\frac{d\mathbb{Q}}{d\mathbb{P}_0}\right)\right]$ is not a metric and only considers distributions with the same support as \mathbb{P}_0 .

• Wasserstein distance-based ambiguity sets

$$\mathcal{P} = \{\mathbb{Q} \in \mathcal{P}(\mathcal{U}) \mid W_{p}(\mathbb{Q}, \mathbb{P}_{0}) \leq \theta\}$$

Contents

Unit Commitment

2 Traditional Methods

- Robust Optimization
- Stochastic Programming

Oistributionnally Robust Optimization

Introduction

Divergence

- Wasserstein distance
- 4 Computational Experiments

5 Conclusion

DRO problem can be reformulated as:

$$\min_{x} \quad c^{\top}x + \max_{\mathbb{Q}: D_{\phi}(\mathbb{Q}, \mathbb{P}_{0}) \leq \theta} \mathbb{E}_{\mathbb{Q}}[Q(x, \xi)]$$
s.t. $x \in X$

Kullback-Leibler divergence:

$$\phi_{KL}(x) = x \log(x) - x + 1, \qquad \phi_{KL}^*(y) = e^y - 1$$
 $D_{\phi_{KL}}(\mathbb{Q}, \mathbb{P}) = \mathbb{E}_{\mathbb{Q}}\left[\log\left(\frac{d\mathbb{Q}}{d\mathbb{P}}\right)
ight]$

ϕ -divergence

DRO problem can be reformulated as:

$$\min_{\substack{x,\beta,\alpha\geq 0}} \quad c^{\top}x + \beta + \theta \cdot \alpha + \alpha \frac{1}{N} \sum_{i=1}^{N} \phi^* \left(\frac{Q(x,\zeta_i) - \beta}{\alpha} \right)$$

s.t. $x_i \in X_i, \quad \forall i \in \mathcal{M}$

Kullback-Leibler divergence:

$$\phi_{KL}(x) = x \log(x) - x + 1, \qquad \phi_{KL}^*(y) = e^y - 1$$
$$D_{\phi_{KL}}(\mathbb{Q}, \mathbb{P}) = \mathbb{E}_{\mathbb{Q}}\left[\log\left(\frac{d\mathbb{Q}}{d\mathbb{P}}\right)\right]$$

ϕ -divergence

DRO problem can be reformulated as:

$$\min_{\substack{x,\beta,\alpha\geq 0}} \quad c^{\top}x + \beta + \theta \cdot \alpha + \alpha \frac{1}{N} \sum_{i=1}^{N} \phi^* \left(\frac{Q(x,\zeta_i) - \beta}{\alpha} \right)$$

s.t. $x_i \in X_i, \quad \forall i \in \mathcal{M}$

Kullback-Leibler divergence:

$$egin{aligned} \phi_{\mathcal{KL}}(x) &= x \log(x) - x + 1, \qquad \phi^*_{\mathcal{KL}}(y) = e^y - 1 \ & D_{\phi_{\mathcal{KL}}}(\mathbb{Q},\mathbb{P}) = \mathbb{E}_{\mathbb{Q}}iggl[\logiggl(rac{d\mathbb{Q}}{d\mathbb{P}}iggr)iggr] \end{aligned}$$

 Computational Experiments

Conclusion 00

KL-divergence

$$\min_{\substack{x,\beta,\alpha \ge 0, z \in \mathbb{R}^{N}_{+}}} \quad c^{\top}x + \beta + (\theta - 1) \cdot \alpha + \frac{\alpha}{N} \sum_{i=1}^{N} z_{i}$$

$$s.t. \quad z_{i} \ge e^{\frac{Q(x,\zeta_{i}) - \beta}{\alpha}} \qquad \forall i \in [N]$$

$$x \in X$$

Tangents approximation:

$$\min_{\substack{x,\beta,\alpha\geq 0, z\in\mathbb{R}^N_+ \\ s.t. \quad z_i\geq \alpha e^{z_r} + e^{z_r} \left(Q(x,\zeta_i) - \beta - \alpha z_r\right) \\ x\in X } c^\top x + \beta + (\theta - 1) \cdot \alpha + \frac{1}{N} \sum_{i=1}^N z_i$$

 \implies Solve with an extensive or L-shaped formulation.

Mathis Azéma

RO, SP and DRO for Unit Commitment

KL-divergence

$$\min_{\substack{x,\beta,\alpha \ge 0, z \in \mathbb{R}^{N}_{+}}} \quad c^{\top}x + \beta + (\theta - 1) \cdot \alpha + \frac{\alpha}{N} \sum_{i=1}^{N} z_{i}$$

$$s.t. \quad z_{i} \ge e^{\frac{Q(x,\zeta_{i}) - \beta}{\alpha}} \qquad \forall i \in [N]$$

$$x \in X$$

Tangents approximation:

$$\min_{\substack{x,\beta,\alpha\geq 0, z\in\mathbb{R}^N_+ \\ s.t. \quad z_i\geq \alpha e^{z_r} + e^{z_r} \left(Q(x,\zeta_i) - \beta - \alpha z_r\right) \\ x\in X } c^\top x + \beta + (\theta - 1) \cdot \alpha + \frac{1}{N} \sum_{i=1}^N z_i$$

 \implies Solve with an extensive or L-shaped formulation.

Mathis Azéma

RO, SP and DRO for Unit Commitment

KL-divergence

$$\min_{\substack{x,\beta,\alpha \ge 0, z \in \mathbb{R}^{N}_{+}}} \quad c^{\top}x + \beta + (\theta - 1) \cdot \alpha + \frac{\alpha}{N} \sum_{i=1}^{N} z_{i}$$

$$s.t. \quad z_{i} \ge e^{\frac{Q(x,\zeta_{i}) - \beta}{\alpha}} \qquad \forall i \in [N]$$

$$x \in X$$

Tangents approximation:

$$\min_{\substack{x,\beta,\alpha\geq 0, z\in\mathbb{R}^N_+\\ s.t. \quad z_i\geq \alpha e^{z_r}+e^{z_r}\left(Q(x,\zeta_i)-\beta-\alpha z_r\right)\\ x\in X } c^\top x+\beta+(\theta-1)\cdot\alpha+\frac{1}{N}\sum_{i=1}^N z_i$$

 \implies Solve with an extensive or L-shaped formulation.

RO, SP and DRO for Unit Commitment

Contents

Unit Commitment

2 Traditional Methods

- Robust Optimization
- Stochastic Programming

Oistributionnally Robust Optimization

- Introduction
- Divergence
- Wasserstein distance

4 Computational Experiments

5 Conclusion

Traditional Methods

DRO

Computational Experiments

Conclusion

Wassertein-distance definition

 $\mathcal{P} = \{ \mathbb{Q} \mid W_{p}(\mathbb{Q}, \mathbb{P}) \leq \theta, \quad supp(\mathbb{Q}) \subset \mathcal{U} \}$

Unit Commitment Traditional Methods DRO Computational Experiments Conclusion occorrection Computational Experiments Conclusion occorrection occorrection Conclusion occorrection occorrection Conclusion occorrection occorrection

Choice of L^2 Wassertein distance: Problem with L^1 norm

In our study, no information is given in the support of the distributions: $\mathcal{U} = \mathbb{R}^{\mathcal{T}}$

$$\mathcal{L}^{1}\text{-norm: with } \lambda_{\infty} := \max_{k \in [K]} \|\alpha_{k}\|_{\infty}$$
$$\min_{x} \quad c^{\top}x + \underbrace{\boxed{\lambda_{\infty}\theta}}_{k \in [K]} + \frac{1}{N} \sum_{i=1}^{N} \underbrace{\max_{k \in [K]} (\alpha_{k}^{\top}\zeta_{i} + \beta_{k}^{\top}x + \gamma_{k})}_{\mathcal{Q}(x,\zeta_{i})}$$

s.t.
$$x \in X$$

 \implies No link between x and θ !

²Gao and Kleywegt 2016.

Unit Commitment Traditional Methods DRO Computational Experiments Conclusion

Choice of L^2 Wassertein distance: Problem with L^1 norm

General reformulation²: $\min_{x,\lambda\geq 0} \quad c^{\top}x + \lambda\theta^{p} + \frac{1}{N}\sum_{i=1}^{N}\sup_{\xi\in\mathcal{U}} \left(Q(x,\xi) - \lambda \|\xi - \zeta_{i}\|^{p}\right)$ s.t. $x \in X$

In our study, no information is given in the support of the distributions: $\mathcal{U} = \mathbb{R}^{\mathcal{T}}$

$$L^{1}\text{-norm: with } \lambda_{\infty} := \max_{k \in [K]} \|\alpha_{k}\|_{\infty}$$
$$\min_{x} \quad c^{\top}x + \underbrace{\lambda_{\infty}\theta}^{\text{Cste}} + \frac{1}{N} \sum_{i=1}^{N} \underbrace{\max_{k \in [K]} (\alpha_{k}^{\top}\zeta_{i} + \beta_{k}^{\top}x + \gamma_{k})}_{Q(x,\zeta_{i})}$$

s.t.
$$x \in X$$

 \implies No link between x and θ !

²Gao and Kleywegt 2016.

Unit Commitment Traditional Methods DRO Computational Experiments Conclusion

Choice of L^2 Wassertein distance: Problem with L^1 norm

General reformulation²:

$$\min_{x,\lambda\geq 0} \quad c^{\top}x + \lambda\theta^{p} + \frac{1}{N}\sum_{i=1}^{N} \max_{\xi\in\mathcal{U},k\in[K]} \left(\alpha_{k}^{\top}\xi + \beta_{k}^{\top}x + \gamma_{k} - \lambda\|\xi - \zeta_{i}\|^{p}\right)$$
s.t. $x \in X$

In our study, no information is given in the support of the distributions: $\mathcal{U} = \mathbb{R}^{\mathcal{T}}$

$$L^{1}\text{-norm: with } \lambda_{\infty} := \max_{k \in [K]} \|\alpha_{k}\|_{\infty}$$
$$\min_{x} \quad c^{\top}x + \underbrace{\sum_{k \in [K]}^{\text{Cste}} + \frac{1}{N} \sum_{i=1}^{N} \underbrace{\max_{k \in [K]} (\alpha_{k}^{\top}\zeta_{i} + \beta_{k}^{\top}x + \gamma_{k})}_{Q(x,\zeta_{i})}}_{Q(x,\zeta_{i})}$$

s.t.
$$x \in X$$

 \implies No link between x and θ !

²Gao and Kleywegt 2016.

Unit Commitment Traditional Methods DRO Computational Experiments Conclusion

Choice of L^2 Wassertein distance: Problem with L^1 norm

General reformulation²:

$$\min_{x,\lambda\geq 0} \quad c^{\top}x + \lambda\theta^{p} + \frac{1}{N}\sum_{i=1}^{N}\max_{k\in[K]}\left(\beta_{k}^{\top}x + \gamma_{k} + \max_{\xi\in\mathcal{U}}(\alpha_{k}^{\top}\xi - \lambda\|\xi - \zeta_{i}\|^{p})\right)$$
s.t. $x \in X$

In our study, no information is given in the support of the distributions: $\mathcal{U} = \mathbb{R}^{\mathcal{T}}$

$$L^{1}\text{-norm: with } \lambda_{\infty} := \max_{k \in [K]} \|\alpha_{k}\|_{\infty}$$
$$\min_{x} \quad c^{\top}x + \underbrace{\left[\lambda_{\infty}\theta\right]}_{k \in [K]} + \frac{1}{N} \sum_{i=1}^{N} \underbrace{\max_{k \in [K]} \left(\alpha_{k}^{\top}\zeta_{i} + \beta_{k}^{\top}x + \gamma_{k}\right)}_{Q(x,\zeta_{i})}$$

s.t.
$$x \in X$$

 \implies No link between x and θ !

²Gao and Kleywegt 2016.

Unit Commitment Traditional Methods DRO Computational Experiments Conclusion of Comput

Choice of L^2 Wassertein distance: Problem with L^1 norm

General reformulation²:

$$\min_{x,\lambda\geq 0} \quad c^{\top}x + \lambda\theta^{p} + \frac{1}{N}\sum_{i=1}^{N}\max_{k\in[K]}\left(\beta_{k}^{\top}x + \gamma_{k} + \max_{\xi\in\mathbb{R}^{T}}(\alpha_{k}^{\top}\xi - \lambda\|\xi - \zeta_{i}\|^{p})\right)$$
s.t. $x\in X$

In our study, no information is given in the support of the distributions: $\mathcal{U} = \mathbb{R}^{\mathcal{T}}$

$$L^{1}\text{-norm: with } \lambda_{\infty} := \max_{k \in [K]} \|\alpha_{k}\|_{\infty}$$
$$\min_{x} \quad c^{\top}x + \underbrace{\frac{\mathsf{Cste}}{\lambda_{\infty}\theta}}_{x} + \frac{1}{N} \sum_{i=1}^{N} \underbrace{\max_{k \in [K]} \left(\alpha_{k}^{\top}\zeta_{i} + \beta_{k}^{\top}x + \gamma_{k}\right)}_{Q(x,\zeta_{i})}$$

s.t.
$$x \in X$$

 \implies No link between x and θ !

²Gao and Kleywegt 2016.

Unit Commitment Traditional Methods DRO Computational Experiments Conclusion of Comput

Choice of L^2 Wassertein distance: Problem with L^1 norm

General reformulation²:

$$\min_{x,\lambda\geq 0} \quad c^{\top}x + \lambda\theta^{p} + \frac{1}{N}\sum_{i=1}^{N}\max_{k\in[K]}\left(\beta_{k}^{\top}x + \gamma_{k} + \max_{\xi\in\mathbb{R}^{T}}(\alpha_{k}^{\top}\xi - \lambda\|\xi - \zeta_{i}\|^{p})\right)$$
s.t. $x\in X$

In our study, no information is given in the support of the distributions: $\mathcal{U} = \mathbb{R}^{\mathcal{T}}$

$$L^{1}\text{-norm: with } \lambda_{\infty} := \max_{k \in [K]} \|\alpha_{k}\|_{\infty}$$
$$\min_{x} \quad c^{\top}x + \underbrace{\begin{bmatrix} \text{Cste} \\ \lambda_{\infty}\theta \end{bmatrix}}_{k \in [K]} + \frac{1}{N} \sum_{i=1}^{N} \underbrace{\max_{k \in [K]} \left(\alpha_{k}^{\top}\zeta_{i} + \beta_{k}^{\top}x + \gamma_{k}\right)}_{Q(x,\zeta_{i})}$$

s.t.
$$x \in X$$

 \implies No link between x and θ !

²Gao and Kleywegt 2016.

Unit Commitment Traditional Methods ORO Computational Experiments Conclusion

Choice of L^2 Wassertein distance: Problem with L^1 norm

General reformulation²:

$$\min_{x,\lambda\geq 0} \quad c^{\top}x + \lambda\theta^{p} + \frac{1}{N}\sum_{i=1}^{N}\max_{k\in[K]}\left(\beta_{k}^{\top}x + \gamma_{k} + \max_{\xi\in\mathbb{R}^{T}}(\alpha_{k}^{\top}\xi - \lambda\|\xi - \zeta_{i}\|^{p})\right)$$
s.t. $x\in X$

In our study, no information is given in the support of the distributions: $\mathcal{U} = \mathbb{R}^{\mathcal{T}}$

$$L^{1}\text{-norm: with } \lambda_{\infty} := \max_{k \in [K]} \|\alpha_{k}\|_{\infty}$$
$$\min_{x} \quad c^{\top}x + \underbrace{\boxed{\lambda_{\infty}\theta}}_{k} + \frac{1}{N} \sum_{i=1}^{N} \underbrace{\max_{k \in [K]} (\alpha_{k}^{\top}\zeta_{i} + \beta_{k}^{\top}x + \gamma_{k})}_{Q(x,\zeta_{i})}$$

s.t.
$$x \in X$$

 \implies No link between x and θ !

²Gao and Kleywegt 2016.

Traditional Methods

DRO

Computational Experiments

Conclusion

L^2 -norm reformulation

DRO problem with norm L^2 is equivalent to:

$$\min_{\substack{x,\lambda \ge 0}} c^{\top}x + \lambda\theta^2 + \frac{1}{N} \sum_{i=1}^N \max_{k \in [K]} \left(\beta_k^{\top}x + \gamma_k + \max_{\xi \in \mathbb{R}^T} (\alpha_k^{\top}\xi - \lambda \|\xi - \zeta_i\|_2^2) \right)$$

$$s.t. \quad x \in X$$

Note: We remove the ξ variables without losing the link between x and θ .

$$\min_{\substack{k,\lambda \ge 0, z \ge 0, w \ge 0}} c^{\top} x + w\theta^2 + \frac{1}{N} \sum_{i=1}^N z_i$$

$$s.t. \quad x \in X \\ \| (2, w - \lambda) \|_2 \le w + \lambda$$

$$z_i \ge \left(\alpha_k^{\top} \zeta_i + \beta_k^{\top} x + \gamma_k + \frac{\lambda \|\alpha_k\|_2^2}{4} \right) \quad \forall k \in [K]$$

 \implies Benders' algorithm

Traditional Methods

DRO

Computational Experiments

Conclusion

L^2 -norm reformulation

DRO problem with norm L^2 is equivalent to:

$$\min_{\substack{x,\lambda \ge 0}} c^{\top}x + \lambda\theta^2 + \frac{1}{N} \sum_{i=1}^{N} \max_{k \in [K]} \left(\beta_k^{\top}x + \gamma_k + \alpha_k^{\top}\zeta_i + \frac{\|\alpha_k\|_2^2}{4\lambda} \right)$$
s.t. $x \in X$

Note: We remove the ξ variables without losing the link between x and θ .

$$\min_{\substack{x,\lambda \ge 0, z \ge 0, w \ge 0}} c^{\top} x + w\theta^2 + \frac{1}{N} \sum_{i=1}^N z_i$$

s.t. $x \in X$
 $\|(2, w - \lambda)\|_2 \le w + \lambda$
 $z_i \ge \left(\alpha_k^{\top} \zeta_i + \beta_k^{\top} x + \gamma_k + \frac{\lambda \|\alpha_k\|_2^2}{4}\right) \quad \forall k \in [K]$

 \implies Benders' algorithm

Traditional Methods

DRO

Computational Experiments

Conclusion

L^2 -norm reformulation

DRO problem with norm L^2 is equivalent to:

$$\min_{\substack{x,\lambda \ge 0 \\ s.t. \quad x \in X}} c^{\top} x + \lambda \theta^2 + \frac{1}{N} \sum_{i=1}^{N} \max_{k \in [K]} \left(\beta_k^{\top} x + \gamma_k + \alpha_k^{\top} \zeta_i + \frac{\|\alpha_k\|_2^2}{4\lambda} \right)$$

Note: We remove the ξ variables without losing the link between x and θ .

$$\min_{\substack{x,\lambda \ge 0, z \ge 0, w \ge 0}} \quad c^{\top}x + w\theta^2 + \frac{1}{N} \sum_{i=1}^N z_i$$

s.t. $x \in X$
 $\|(2, w - \lambda)\|_2 \le w + \lambda$
 $z_i \ge \left(\alpha_k^{\top}\zeta_i + \beta_k^{\top}x + \gamma_k + \frac{\lambda \|\alpha_k\|_2^2}{4}\right) \quad \forall k \in [K]$

 \implies Benders' algorithm

Traditional Methods

DRO

Computational Experiments

Conclusion

L^2 -norm reformulation

DRO problem with norm L^2 is equivalent to:

$$\min_{\substack{x,\lambda \ge 0}} c^{\top}x + \lambda\theta^2 + \frac{1}{N}\sum_{i=1}^N \max_{k \in [K]} \left(\beta_k^{\top}x + \gamma_k + \alpha_k^{\top}\zeta_i + \frac{\|\alpha_k\|_2^2}{4\lambda}\right)$$

s.t. $x \in X$

Note: We remove the ξ variables without losing the link between x and θ .

$$\min_{\substack{x,\lambda \ge 0, z \ge 0, w \ge 0}} \quad c^{\top}x + w\theta^2 + \frac{1}{N} \sum_{i=1}^N z_i$$
s.t. $x \in X$

$$\| (2, w - \lambda) \|_2 \le w + \lambda$$

$$z_i \ge \left(\alpha_k^{\top} \zeta_i + \beta_k^{\top} x + \gamma_k + \frac{\lambda \|\alpha_k\|_2^2}{4} \right) \quad \forall k \in [K]$$

 \implies Benders' algorithm

Traditional Methods

DRO

Computational Experiments

Conclusion

L^2 -norm reformulation

DRO problem with norm L^2 is equivalent to:

$$\min_{\substack{x,\lambda \ge 0 \\ s.t. \quad x \in X}} c^{\top} x + \lambda \theta^2 + \frac{1}{N} \sum_{i=1}^{N} \max_{k \in [K]} \left(\beta_k^{\top} x + \gamma_k + \alpha_k^{\top} \zeta_i + \frac{\|\alpha_k\|_2^2}{4\lambda} \right)$$

Note: We remove the ξ variables without losing the link between x and θ .

$$\min_{\substack{x,\lambda \ge 0, z \ge 0, w \ge 0}} \quad c^{\top}x + w\theta^2 + \frac{1}{N} \sum_{i=1}^N z_i$$
s.t. $x \in X$

$$\| (2, w - \lambda) \|_2 \le w + \lambda$$

$$z_i \ge \left(\alpha_k^{\top} \zeta_i + \beta_k^{\top} x + \gamma_k + \frac{\lambda \|\alpha_k\|_2^2}{4} \right) \quad \forall k \in [K]$$

 \implies Benders' algorithm

DRO

Computational Experiment

Benders algorithm DRO

DRO

Computational Experiment

Another algorithm using worstcase distributions (CCG)

Contents

Unit Commitment

2 Traditional Methods

- Robust Optimization
- Stochastic Programming

3 Distributionnally Robust Optimization

- Introduction
- Divergence
- Wasserstein distance

4 Computational Experiments

Conclusion

Presentation

- Consideration of instances with thermal units only (source: SMS++/EDF).
- Analysis centered on small-scale instances (10 units) to ensure convergence across all approaches.
- Source scenarios: https://data.open-power-system-data.org/time_series/
- Out-of-sample tests on 300 scenarios

Traditional Methods

Computational Experiments

Conclusion

Out-Of-Sample Costs

Method	10/1/700	10/2/700	10/3/700	10/4/700	10/5/700
TVaR	0.04%	0.34%	0.00%	0.09%	0.13%
MTVaR	0.04%	0.34%	0.00%	0.09%	0.62%
KL	0.04%	0.78%	0.08%	0.01%	0.55%
DW	0.04%	0.00%	0.00%	0.01%	0.00%
RO	0.00%	0.00%	0.00%	0.00%	0.04%
N:50	1.24%	1.02%	1.01%	0.72%	1.48%
Det.	1.75%	0.51%	0.21%	0.95%	2.50%
Min cost	1880117	1315961	1809417	1819979	1888259

Table: Gap between average cost out-of-sample and best cost found among all the approaches

 \implies RO and DW are the best but RO is much easier to solve.

Traditional Methods

Computational Experiments

Conclusion

Costs distributions

Figure: Boxplots of the out-of-sample costs of the instance 10/4/700
Traditional Methods

Computational Experiments

Parameters Sensitivity

Contents

Unit Commitment

2 Traditional Methods

- Robust Optimization
- Stochastic Programming

3 Distributionnally Robust Optimization

- Introduction
- Divergence
- Wasserstein distance

4 Computational Experiments

5 Conclusion

Conclusion

Contributions:

- Analysis of traditional and novel methods for UC under uncertainty.
- Adaptation of a RO method.
- In-depth exploration of DRO using ϕ -divergence and Wasserstein distance.
- Development of specific algorithms to the L^2 Wasserstein distance.
- Numerical performance evaluation.

Future Work:

- Investigate the concave oracle problem for the L² Wasserstein distance to design specific algorithms (e.g., KKT-based reformulations).
- Integrate regularization techniques in Benders' algorithms.
- $\bullet~$ Study the case ${\cal U}$ is bounded and includes specific information.
- Comparison with Chance-Constrained models.
- Computational experiments to other instances and scenarios.

Conclusion

Contributions:

- Analysis of traditional and novel methods for UC under uncertainty.
- Adaptation of a RO method.
- In-depth exploration of DRO using ϕ -divergence and Wasserstein distance.
- Development of specific algorithms to the L^2 Wasserstein distance.
- Numerical performance evaluation.

Future Work:

- Investigate the concave oracle problem for the *L*² Wasserstein distance to design specific algorithms (e.g., KKT-based reformulations).
- Integrate regularization techniques in Benders' algorithms.
- $\bullet\,$ Study the case ${\cal U}$ is bounded and includes specific information.
- Comparison with Chance-Constrained models.
- Computational experiments to other instances and scenarios.