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Deterministic UC Problem

M: set of units

T : time horizon

d ∈ RT : demand vector

xi : commitment variables (binary).

yi : production variables (continuous).

min
xi ,yi

∑
i∈M

c⊤i xi +
∑
i∈M

b⊤i yi

s.t. Fixi ≥ fi ∀i ∈ M
Hiyi ≥ hi ∀i ∈ M
Aixi + Biyi ≥ gi ∀i ∈ M∑
i∈M

yi = d

xi ∈ {0, 1}mi×T , yi ∈ RT
+
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Assumptions

Uncertainty on the demand.

2-stage assumption:

1st stage: commitment variables (binary)
2nd stage: production variables (continuous)

min
xi ,yi

c⊤x + b⊤y

s.t. x ∈ X

yi ∈ Yi (xi ) ∀i ∈ M∑
i∈M

yi = d ?
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Mathis Azéma RO, SP and DRO for Unit Commitment 19/11/24 3 / 24



Unit Commitment Traditional Methods DRO Computational Experiments Conclusion

Assumptions

Uncertainty on the demand.
2-stage assumption:

1st stage: commitment variables (binary)
2nd stage: production variables (continuous)

min
xi

c⊤x + Q(x , d)

s.t. x ∈ X

Q(x , d): recourse function representing the optimal cost of the
second stage, considering which units are on or off (first stage) and
the demand d

Q(x , d) = min
y

b⊤y = max
α,β,γ

α⊤d + β⊤x + γ

yi ∈ Yi (xi ) (α, β, γ) ∈ Λ∑
i∈M

yi = d
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Principle

Robust problem: minimize the worst-case

min
x

c⊤x +max
d∈D

Q(x , d)

s.t. xi ∈ Xi ∀i ∈ M
xi ∈ {0, 1}mi×T

Budget Uncertainty Set:

D =
{
d = (dt)t∈[T ] | dt = d̂t + γt∆t

∑
|γt | ≤ Γ γt ∈ [−1, 1]

}
=⇒ Objective: Find a tractable reformulation to solve the
min-max-min problem
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Mathis Azéma RO, SP and DRO for Unit Commitment 19/11/24 4 / 24



Unit Commitment Traditional Methods DRO Computational Experiments Conclusion

Steps for reformulating max
d∈D

Q(x , d)

1 If Γ is an integer, then:

max
d∈D

Q(x , d) = max
d∈ext(D)

Q(x , d)

ext(D) =
{
d = (dt)t∈[T ] | dt = d̄t + γt∆t

∑
|γt | ≤ Γ γt ∈ {−1, 0, 1}

}
2 Dualize the recourse function:

Q(x , d) = max
(
α⊤d + β⊤x + γ s.t. (α, β, γ) ∈ Λ

)
3 Transform the bilinear worst-case problem into a MILP:

max
d∈D

Q(x , d) = max
d∈ext(D),(α,β,γ)∈Λ

α⊤d + β⊤x + γ

Contribution: Adaptation of the method developed by
Billionnet et al. [2016]1 which assumes α ≥ 0 (stemming from∑

yi ≥ d instead of
∑

yi = d)
1Billionnet, Costa, and Poirion 2016.
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Benders Algorithm

Initial Robust Problem:

min
x ,θ

c⊤x + θ

s.t. xi ∈ Xi ∀i ∈ M
θ ≥ max

d∈D
Q(x , d)

xi ∈ {0, 1}mi×T
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Benders Algorithm

Dualize the recourse function:

Q(x , d) = max
(
α⊤d + β⊤x + γ s.t. (α, β, γ) ∈ Λ

)

min
x ,θ

c⊤x + θ

s.t. xi ∈ Xi ∀i ∈ M

θ ≥ max
(
α⊤d + β⊤x + γ s.t. (α, β, γ) ∈ Λ

)
∀d ∈ ext(D)

xi ∈ {0, 1}mi×T
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Benders Algorithm

Decomposition over the extreme points (αk , βk , γk) of the dual
polytope Λ:

min
x ,θ

c⊤x + θ

s.t. xi ∈ Xi ∀i ∈ M

θ ≥ max
k∈[K ]

(
α⊤
k d + β⊤

k x + γk

)
∀d ∈ ext(D)

xi ∈ {0, 1}mi×T
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Benders Algorithm

Linearization:

min
x ,θ

c⊤x + θ

s.t. xi ∈ Xi ∀i ∈ M

θ ≥
(
α⊤
k d + β⊤

k x + γk

)
∀d ∈ ext(D)∀k ∈ [K ]

xi ∈ {0, 1}mi×T
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Benders Algorithm

Master Problem:

min
x ,θ

c⊤x + θ

s.t. xi ∈ Xi , ∀i ∈ M
θ ≥ α⊤

ℓ d ℓ + β⊤
ℓ x + γℓ, ∀ℓ ≤ k

θ ∈ R, xi ∈ {0, 1}mi×T

Subproblem:

max
α,β,γ,d

α⊤d + β⊤x∗ + γ

s.t. (α, β, γ) ∈ Λ, d ∈ ext(D)

(αk+1, βk+1, γk+1, dk+1)
= (α∗, β∗, γ∗, d∗)

x∗
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CCG Algorithm

Initial Robust Problem:

min
x ,θ

c⊤x + θ

s.t. xi ∈ Xi ∀i ∈ M
θ ≥ max

d∈D
Q(x , d)

xi ∈ {0, 1}mi×T
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CCG Algorithm

If Γ is an integer, then:

max
d∈D

Q(x , d) = max
d∈ext(D)

Q(x , d)

min
x ,θ

c⊤x + θ
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Mathis Azéma RO, SP and DRO for Unit Commitment 19/11/24 7 / 24



Unit Commitment Traditional Methods DRO Computational Experiments Conclusion

CCG Algorithm

Primal form of the recourse function:

Q(x , d) = min
y

b⊤y

yi ∈ Yi (xi ) ∀i ∈ M∑
i∈M

yi = d

min
x ,θ

c⊤x + θ

s.t. xi ∈ Xi ∀i ∈ M
θ ≥ min

yd
i ∈Yi (xi )∑
i∈M yd

i =d

b⊤yd ∀d ∈ ext(D)

xi ∈ {0, 1}mi×T
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CCG Algorithm

min
x ,y

c⊤x + θ

s.t. xi ∈ Xi ∀i ∈ M
θ ≥ b⊤yd ∀d ∈ ext(D)

ydi ∈ Yi (xi ) ∀d ∈ ext(D), ∀i ∈ M∑
i∈M

ydi = d ∀d ∈ ext(D)

xi ∈ {0, 1}mi×T
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CCG Algorithm

Master Problem:

min
x ,y

c⊤x +max
ℓ∈[k]

b⊤y ℓ

s.t. xi ∈ Xi , ∀i ∈ M
y ℓ

i ∈ Y i (x i ), ∀i ∈ M,∀ℓ ≤ k∑∑∑
i∈M

y ℓ
i = d ℓ, ∀ℓ ≤ k

Subproblem:

max
α,β,γ,d

α⊤d + β⊤x∗ + γ

s.t. (α, β, γ) ∈ Λ, d ∈ ext(D)

dk+1 = d∗x∗
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Different Risk Measures

Risk neutral: E[X ]

min c⊤x + E[Q(x , d)]

s.t. xi ∈ Xi , ∀i ∈ M

Risk Averse (TVAR): E[X |X ≥ VaRα(X )]

min c⊤x + z +
1

1− α
E[max(Q(x , d)− z , 0)]

s.t. xi ∈ Xi , ∀i ∈ M

MTVaR: βE[X ] + (1− β)E[X |X ≥ VaRα(X )]

min c⊤x + βE[Q(x , d)] + (1− β)z +
1− β

1− α
E[max(Q(x , d)− z , 0)]

s.t. xi ∈ Xi , ∀i ∈ M
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Algorithms

Extensive formulation:

min c⊤x + E[Q(x , d)]

s.t. xi ∈ Xi , ∀i ∈ M
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Algorithms

Extensive formulation:

min c⊤x +
∑
s∈S

πsQ(x , d s)

s.t. xi ∈ Xi , ∀i ∈ M
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Algorithms

Extensive formulation:

min c⊤x +
∑
s∈S

πs min
y s
i ∈Yi (xi )∑
i∈M y s

i =d s

b⊤y s

s.t. xi ∈ Xi , ∀i ∈ M
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Algorithms

Extensive formulation:

min c⊤x +
∑
s∈S

πsb
⊤y s

s.t. xi ∈ Xi , ∀i ∈ M
y si ∈ Yi (xi ), ∀i ∈ M, ∀s ∈ S∑
i∈M

y si = d s , ∀s ∈ S
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Algorithms

L-shaped (Benders):

Master Problem:

min
x ,θ

c⊤x + θ

s.t. xi ∈ Xi , ∀i ∈ M
θ ≥

∑
s

πs

(
(αs

ℓ)
⊤d s + (βs

ℓ )
⊤x + (γsℓ )

)
, ∀ℓ ≤ k

θ ∈ R, xi ∈ {0, 1}mi×T

Subproblem for each scenario s:

max
α,β,γ

α⊤d s + β⊤x∗ + γ

s.t. (α, β, γ) ∈ Λ

(αs
k+1, β

s
k+1, γ

s
k+1)

= (α∗, β∗, γ∗)
x∗
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Introduction

min
x

c⊤x +max
Q∈P

Eξ∼Q[Q(x , ξ)]

s.t. xi ∈ Xi , ∀i ∈ M

Link between RO and SP:

If P = {P0}, then the DRO problem is equal to the
risk-neutral one.

If P includes all distributions supported on U , then the DRO
problem is equivalent to the robust optimization (RO)
problem with U as the uncertainty set.

=⇒ How can we select P to benefit from the advantages of
both RO and SP?
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Unit Commitment Traditional Methods DRO Computational Experiments Conclusion

Introduction

min
x

c⊤x +max
Q∈P

Eξ∼Q[Q(x , ξ)]

s.t. xi ∈ Xi , ∀i ∈ M

Link between RO and SP:

If P = {P0}, then the DRO problem is equal to the
risk-neutral one.

If P includes all distributions supported on U , then the DRO
problem is equivalent to the robust optimization (RO)
problem with U as the uncertainty set.

=⇒ How can we select P to benefit from the advantages of
both RO and SP?
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Choice of P

Idea: P has to include distributions “close” to the empirical one.

Moments-based ambiguity sets

P = {Q | |E[Q]− E[P0]| ≤ θ}

ϕ-divergence-based ambiguity sets

P = {Q |Dϕ(Q,P0) ≤ θ}

Problem: Dϕ(Q,P0) = EP

[
ϕ
(

dQ
dP0

)]
is not a metric and only

considers distributions with the same support as P0.

Wasserstein distance-based ambiguity sets

P = {Q ∈ P(U) |Wp(Q,P0) ≤ θ}
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ϕ-divergence

DRO problem can be reformulated as:

min
x

c⊤x + max
Q:Dϕ(Q,P0)≤θ

EQ[Q(x , ξ)]

s.t. x ∈ X

Kullback-Leibler divergence:

ϕKL(x) = x log(x)− x + 1, ϕ∗
KL(y) = ey − 1

DϕKL
(Q,P) = EQ

[
log

(
dQ
dP

)]
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KL-divergence

min
x,β,α≥0,z∈RN

+

c⊤x + β + (θ − 1) · α+
α

N

N∑
i=1

zi

s.t. zi ≥ e
Q(x,ζi )−β

α ∀i ∈ [N]

x ∈ X

Tangents approximation:

min
x,β,α≥0,z∈RN

+

c⊤x + β + (θ − 1) · α+
1

N

N∑
i=1

zi

s.t. zi ≥ αezr + ezr (Q(x , ζi )− β − αzr ) ∀i ∈ [N], ∀r ∈ R
x ∈ X

=⇒ Solve with an extensive or L-shaped formulation.
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Mathis Azéma RO, SP and DRO for Unit Commitment 19/11/24 14 / 24



Unit Commitment Traditional Methods DRO Computational Experiments Conclusion

Contents

1 Unit Commitment

2 Traditional Methods
Robust Optimization
Stochastic Programming

3 Distributionnally Robust Optimization
Introduction
Divergence
Wasserstein distance

4 Computational Experiments

5 Conclusion
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Wassertein-distance definition

(Wp(Q,P))p = inf
π∈P(U,U)

∫
U×U

∥ξ − ζ∥pdπ(ξ, ζ)

s.t.

∫
{ξ}×U

dπ(ξ, ζ) = Q(ξ) ∀ξ ∈ U∫
U×{ζ}

dπ(ξ, ζ) = P(ζ) ∀ζ ∈ U

P

Q
πP→Q(ξ, ζ)

P = {Q |Wp(Q,P) ≤ θ, supp(Q) ⊂ U}
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Choice of L2 Wassertein distance: Problem with L1 norm

General reformulation2:
min
x

c⊤x + max
Q:Wp(Q,P0)≤θ [λ]

supp(Q)⊂U

EQ[Q(x , ξ)]

s.t. x ∈ X

In our study, no information is given in the support of the distributions:
U = RT

L1-norm: with λ∞ := max
k∈[K ]

∥αk∥∞

min
x

c⊤x +
Cste

λ∞θ +
1

N

N∑
i=1

max
k∈[K ]

(
α⊤
k ζi + β⊤

k x + γk
)

︸ ︷︷ ︸
Q(x,ζi )

s.t. x ∈ X

=⇒ No link between x and θ !

2Gao and Kleywegt 2016.
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L2-norm reformulation

DRO problem with norm L2 is equivalent to:

min
x,λ≥0

c⊤x + λθ2 +
1

N

N∑
i=1

max
k∈[K ]

(
β⊤
k x + γk + max

ξ∈RT
(α⊤

k ξ − λ∥ξ − ζi∥22)
)

s.t. x ∈ X

Note: We remove the ξ variables without losing the link between x and θ.

min
x,λ≥0,z≥0,w≥0

c⊤x + wθ2 +
1

N

N∑
i=1

zi

s.t. x ∈ X

∥(2,w − λ)∥2 ≤ w + λ

zi ≥
(
α⊤
k ζi + β⊤

k x + γk +
λ∥αk∥22

4

)
∀k ∈ [K ]

=⇒ Benders’ algorithm
Mathis Azéma RO, SP and DRO for Unit Commitment 19/11/24 17 / 24



Unit Commitment Traditional Methods DRO Computational Experiments Conclusion

L2-norm reformulation

DRO problem with norm L2 is equivalent to:

min
x,λ≥0

c⊤x + λθ2 +
1

N

N∑
i=1

max
k∈[K ]

(
β⊤
k x + γk + α⊤

k ζi +
∥αk∥22
4λ

)
s.t. x ∈ X

Note: We remove the ξ variables without losing the link between x and θ.

min
x,λ≥0,z≥0,w≥0

c⊤x + wθ2 +
1

N

N∑
i=1

zi

s.t. x ∈ X

∥(2,w − λ)∥2 ≤ w + λ

zi ≥
(
α⊤
k ζi + β⊤

k x + γk +
λ∥αk∥22

4

)
∀k ∈ [K ]

=⇒ Benders’ algorithm
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Mathis Azéma RO, SP and DRO for Unit Commitment 19/11/24 17 / 24



Unit Commitment Traditional Methods DRO Computational Experiments Conclusion

Benders algorithm DRO

Master Problem:

min
x,w ,λ,z

c⊤x + wθ2 +
1

N

N∑
i=1

zi

s.t. x ∈ X
∥(2,w − λ)∥2 ≤ w + λ

z i ≥ (αi
ℓ)

⊤ζ i + (βi
ℓ)

⊤x + γ i
ℓ +

λ∥αi
ℓ∥2

2

4
, ∀ℓ ≤ k, ∀i ∈ [N]

θ ∈ R, xi ∈ {0, 1}mi×T

Subproblem for each scenario i :

max
α,β,γ

α⊤ζi + β⊤x∗ + γ +
λ∗∥α∥22

4
s.t. (α, β, γ) ∈ Λ

(α∗, β∗, γ∗)(x∗, λ∗)
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Another algorithm using worstcase distributions (CCG)

Master Problem:

min
x,z≥0

c⊤x + z

s.t. x ∈ X

z ≥
∑∑∑

d∈supp(µ)

b⊤ydµ(d) ∀µ ∈ Pk

yd
i ∈ Y i (x i ) ∀i ∈ M, ∀µ ∈ Pk , ∀d ∈ supp(µ)∑∑∑

i∈M

yd
i = d ∀µ ∈ Pk , ∀d ∈ supp(µ)

Subproblem for each scenario i :

max
α,β,γ

α⊤ζi + β⊤x∗ + γ +
λ∗∥α∥22

4
s.t. (α, β, γ) ∈ Λ

Compute the worst-case
distribution µ∗

µ∗

(x∗, λ∗)

(α∗, β∗, γ∗)
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Presentation

Consideration of instances with thermal units only (source:
SMS++/ EDF).

Analysis centered on small-scale instances (10 units) to ensure
convergence across all approaches.

Source scenarios:
https://data.open-power-system-data.org/time_series/

Out-of-sample tests on 300 scenarios

Mathis Azéma RO, SP and DRO for Unit Commitment 19/11/24 20 / 24
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Out-Of-Sample Costs

Method 10/1/700 10/2/700 10/3/700 10/4/700 10/5/700
TVaR 0.04% 0.34% 0.00% 0.09% 0.13%
MTVaR 0.04% 0.34% 0.00% 0.09% 0.62%
KL 0.04% 0.78% 0.08% 0.01% 0.55%
DW 0.04% 0.00% 0.00% 0.01% 0.00%
RO 0.00% 0.00% 0.00% 0.00% 0.04%
N:50 1.24% 1.02% 1.01% 0.72% 1.48%
Det. 1.75% 0.51% 0.21% 0.95% 2.50%

Min cost 1880117 1315961 1809417 1819979 1888259

Table: Gap between average cost out-of-sample and best cost found
among all the approaches

=⇒ RO and DW are the best but RO is much easier to solve.
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Costs distributions

Figure: Boxplots of the out-of-sample costs of the instance 10/4/700
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Parameters Sensitivity

Figure: Evolution for each method of the average and standard deviation
of out-of-sample costs and the average of quantity of shedding used with
respect to their parameter. The x-axis is scaled between 0 and 1 for each
parameter to enhance readability, and the minimum and maximum values
of each parameter are indicated in the legend. ”DW:(0,1.5)” denotes
that the parameter θ of this method is tested from 0 to 1.5.
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Conclusion

Contributions:

Analysis of traditional and novel methods for UC under uncertainty.

Adaptation of a RO method.

In-depth exploration of DRO using ϕ-divergence and Wasserstein distance.

Development of specific algorithms to the L2 Wasserstein distance.

Numerical performance evaluation.

Future Work:

Investigate the concave oracle problem for the L2 Wasserstein distance to
design specific algorithms (e.g., KKT-based reformulations).

Integrate regularization techniques in Benders’ algorithms.

Study the case U is bounded and includes specific information.

Comparison with Chance-Constrained models.

Computational experiments to other instances and scenarios.
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